61 research outputs found

    A high-throughput screen to identify inhibitors of SOD1 transcription

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disease. Approximately 20% of familial ALS cases are caused by mutations in the Cu/Zn superoxide dismutase (SOD1) gene. Rodents expressing mutant SOD1 transgenes develop progressive, fatal motor neuron disease and disease onset and progression is dependent on the level of SOD1. We investigated the possibility that a reduction in SOD1 protein may be of therapeutic benefit in ALS and screened 30,000 compounds for inhibition of SOD1 transcription. The most effective inhibitor identified was N-{4-[4-(4-methylbenzoyl)-1-piperazinyl]phenyl}-2-thiophenecarboxamide (Compound ID 7687685), which in PC12 cells showed an EC50 of 10.6 microM for inhibition of SOD1 expression and an LD50 >30 microM. This compound was subsequently shown to reduce endogenous SOD1 levels in HeLa cells and to exhibit a modest reduction of SOD1 protein levels in mouse spinal cord tissue. These data suggest that the efficacy of compound 7687685 as an inhibitor of SOD1 gene expression is not likely to be clinically useful, although the strategy reported could be applied broadly to screening for small molecule inhibitors of gene expression

    High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types

    Get PDF
    OBJECTIVE: To retrospectively determine the frequency of N-Methyl-D-Aspartate (NMDA) receptor (NMDAR) autoantibodies in patients with different forms of dementia. METHODS: Clinical characterization of 660 patients with dementia, neurodegenerative disease without dementia, other neurological disorders and age-matched healthy controls combined with retrospective analysis of serum or cerebrospinal fluid (CSF) for the presence of NMDAR antibodies. Antibody binding to receptor mutants and the effect of immunotherapy were determined in a subgroup of patients. RESULTS: Serum NMDAR antibodies of IgM, IgA, or IgG subtypes were detected in 16.1% of 286 dementia patients (9.5% IgM, 4.9% IgA, and 1.7% IgG) and in 2.8% of 217 cognitively healthy controls (1.9% IgM and 0.9% IgA). Antibodies were rarely found in CSF. The highest prevalence of serum antibodies was detected in patients with “unclassified dementia” followed by progressive supranuclear palsy, corticobasal syndrome, Parkinson’s disease-related dementia, and primary progressive aphasia. Among the unclassified dementia group, 60% of 20 patients had NMDAR antibodies, accompanied by higher frequency of CSF abnormalities, and subacute or fluctuating disease progression. Immunotherapy in selected prospective cases resulted in clinical stabilization, loss of antibodies, and improvement of functional imaging parameters. Epitope mapping showed varied determinants in patients with NMDAR IgA-associated cognitive decline. INTERPRETATION: Serum IgA/IgM NMDAR antibodies occur in a significant number of patients with dementia. Whether these antibodies result from or contribute to the neurodegenerative disorder remains unknown, but our findings reveal a subgroup of patients with high antibody levels who can potentially benefit from immunotherapy

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intraindividual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01

    Get PDF
    We study whether the relationship between the state unemployment rate at the time of conception and infant health, infant mortality and maternal characteristics in the United States has changed over the years 1980-2004. We use microdata on births and deaths for years 1980-2004 and find that the relationship between the state unemployment rate at the time of conception and infant mortality and birthweight changes over time and is stronger for blacks than whites. For years 1980-1989 increases in the state unemployment rate are associated with a decline in infant mortality among blacks, an effect driven by mortality from gestational development and birth weight, and complications of placenta while in utero. In contrast, state economic conditions are unrelated to black infant mortality in years 1990-2004 and white infant mortality in any period, although effects vary by cause of death. We explore potential mechanisms for our findings and, including mothers younger than 18 in the analysis, uncover evidence of age-related maternal selection in response to the business cycle. In particular, in years 1980-1989 an increase in the unemployment rate at the time of conception is associated with fewer babies born to young mothers. The magnitude and direction of the relationship between business cycles and infant mortality differs by race and period. Age-related selection into motherhood in response to the business cycle is a possible explanation for this changing relationship

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    Potential human transmission of amyloid ÎČ pathology: surveillance and risks

    Get PDF
    Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid ÎČ after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid ÎČ through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid ÎČ might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid ÎČ can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid ÎČ transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically

    Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk

    Get PDF
    Multiple sclerosis is a complex neurological disease, with 3c20% of risk heritability attributable to common genetic variants, including >230 identified by genome-wide association studies. Multiple strands of evidence suggest that much of the remaining heritability is also due to additive effects of common variants rather than epistasis between these variants or mutations exclusive to individual families. Here, we show in 68,379 cases and controls that up to 5% of this heritability is explained by low-frequency variation in gene coding sequence. We identify four novel genes driving MS risk independently of common-variant signals, highlighting key pathogenic roles for regulatory T cell homeostasis and regulation, IFN\u3b3 biology, and NF\u3baB signaling. As low-frequency variants do not show substantial linkage disequilibrium with other variants, and as coding variants are more interpretable and experimentally tractable than non-coding variation, our discoveries constitute a rich resource for dissecting the pathobiology of MS. In a large multi-cohort study, unexplained heritability for multiple sclerosis is detected in low-frequency coding variants that are missed by GWAS analyses, further underscoring the role of immune genes in MS pathology

    Macroeconomics and Health: Investing in Health for Economic Development

    No full text
    • 

    corecore