93 research outputs found

    Early warning device for detection of pollutants in water

    Get PDF
    Due to a growing need to protect water resources from contamination, there is a requirement for the development of more reliable and cost effective devices for water quality monitoring. The aim of the AQUAWARN project is to develop and deploy a fully autonomous water quality monitoring device that can measure nitrite, nitrate, phosphate and pH colorimetrically in fresh water and wastewater, and communicate the information to stakeholders in real time

    Early warning pollution detection device for application in water quality

    Get PDF
    It has been well recognised that water is a valuable resource and the quality of our water systems require sampling at a higher temporal and spatial frequency than is currently taking place. The AQUAWARN project aims to meet this challenge through the development of commercially competitive water quality monitoring devices. These will be capable of performing analytical measurements in situ - primarily aimed at freshwater and wastewater systems. The analytes of interest are mainly phosphate, nitrite, nitrate, and pH. The initial focus of this project is the assessment and optimisation of appropriate colorimetric chemistries for each sensing target. These chemistries have been developed and optimised using bench-top instrumentation. Integration within microfluidic chips followed to reduce the per sample costs. Microfluidic technology uses minute amounts of reagent per sample measurement, allowing for a dramatic increase in the number of potential assays per unit volume of reagent. Moreover, the integration of LEDs and photodiodes as light sources and detectors, coupled with syringe pumps, opens the way to new generations of low-cost, portable, and autonomous devices, capable of performing multiple in-situ measurements.  For example, an analysis requiring 50 uL of reagent implies 2,000 measurements are possible per 100 mL of reagent

    Findings from a pilot randomized trial of spinal decompression alone or spinal decompression plus instrumented fusion

    Get PDF
    Aims: Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. Methods: As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients. Results: Of the 90 patients screened, 77 passed the initial screening criteria. A total of 27 patients had a PI-LL mismatch and 23 had a dynamic spondylolisthesis. Following secondary inclusion and exclusion criteria, 31 patients were eligible for the study. Six patients were randomized and one underwent surgery during the study period. Given the low number of patients recruited and randomized, it was not possible to assess completion rates, quality of life, imaging, or health economic outcomes as intended. Conclusion: This study provides a unique insight into the prevalence of dynamic spondylolisthesis and PI-LL mismatch in patients with symptomatic spinal stenosis, and demonstrates that there is a need for a definitive RCT which stratifies for these groups in order to inform surgical decision-making. Nonetheless a definitive study would need further refinement in design and implementation in order to be feasible

    How does internal angle of hoppers affect granular flow? Experimental studies using Digital Particle Image Velocimetry

    Get PDF
    Mechanical behaviour of powders and grains often displays features of solid-like and liquid-like characteristics of matter. In spite of processing granular materials quite extensively in the industries, their flow behaviour is still complex to understand under different process conditions. In this paper, using Digital Particle Image Velocimetry (DPIV) and high speed videography, we probe systematically on the spatial and temporal distribution of the velocity fields of pharmaceutical excipient granules flowing though smooth hoppers with different internal (orifice) angles. This helps to visualise and identify the locations and formation of the flow channels and conversely the stagnation zones of granular materials inside the hoppers as a function of the internal angle of the hoppers. We show that even when a powder characterised as a free-flowing type in the conventional sense could experience a significant level of hindrance to flow when passing through smooth hoppers of different internal angles and its impact increases with increase in the internal angle. Theoretical predictions are made using experimentally evaluated grain-scale properties as input parameters for understanding the effects of hopper angle on the granular flow rate. A good level of agreement is obtained between the experimental and theoretical estimates of the granular flow rate in terms of the hopper angle. The outcomes presented here are a step forward in designing granular flow devices more efficiently in the future

    Avian assemblages at bird baths: a comparison of urban and rural bird baths in Australia

    Full text link
    Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas

    Autonomous reagent-based microfluidic pH sensor platform

    Get PDF
    A portable sensor has been developed for in situ measurements of pH within aqueous environments. The sensor design incorporates microfluidic technology, allowing for the use of low volume of samples and reagents, and an integrated low cost detection system that uses a light emitting diode as light source and a photodiode as the detector. Different combination of dyes has been studied in order to allow for a broader pH detection range, than can be obtained using a single dye. The optimum pH range for this particular dye combination was found to be between pH 4 and pH 9. The reagents developed for pH measurement were first tested using bench-top instrumentation and once optimised, the selected formulation was then implemented in the microfluidic system. The prototype system has been characterised in terms of pH response, linear range, reproducibility and stability. Results obtained using the prototype system are in good agreement with those obtained using reference instrumentation, i.e. a glass electrode/pH meter and analysis via spectrophotometer based assays. The reagent (mixture #3) is shown to be stable for over 8 months, which is important for long term deployments. A high reproducibility is reported with a global RSD of ≤1.8% across measurements of 90 samples, i.e. with respect to concentrations reported by a calibrated pH meter. A series of real water samples from multiple sources were also analysed using the portable sensor system, of which the global error found was 3.84% showing its feasibility for real-world applications

    Mapping Cosmic Dawn and Reionization: Challenges and Synergies

    Get PDF
    Cosmic dawn and the Epoch of Reionization (EoR) are among the least explored observational eras in cosmology: a time at which the first galaxies and supermassive black holes formed and reionized the cold, neutral Universe of the post-recombination era. With current instruments, only a handful of the brightest galaxies and quasars from that time are detectable as individual objects, due to their extreme distances. Fortunately, a multitude of multi-wavelength intensity mapping measurements, ranging from the redshifted 21 cm background in the radio to the unresolved X-ray background, contain a plethora of synergistic information about this elusive era. The coming decade will likely see direct detections of inhomogenous reionization with CMB and 21 cm observations, and a slew of other probes covering overlapping areas and complementary physical processes will provide crucial additional information and cross-validation. To maximize scientific discovery and return on investment, coordinated survey planning and joint data analysis should be a high priority, closely coupled to computational models and theoretical predictions.Comment: 5 pages, 1 figure, submitted to the Astro2020 Decadal Survey Science White Paper cal

    Consumer perceptions of safety in hospitals

    Get PDF
    BACKGROUND: Studies investigating adverse events have traditionally been principally undertaken from a medical perspective. The impact that experience of an adverse event has on consumer confidence in health care is largely unknown. The objectives of the study were to seek public opinion on 1) the rate and severity of adverse events experienced in hospitals; and 2) the perception of safety in hospitals, so that predictors of lack of safety could be identified. METHODS: A multistage, clustered survey of persons residing in South Australia (2001), using household interviews (weighted n = 2,884). RESULTS: A total of 67% of respondents aged over forty years reported having at least one member of their household hospitalised in the past five years; with the average being two hospital admissions in five years. Respondents stated that 7.0% (95%CI: 6.2% to 7.9%) of those hospital admissions were associated with an adverse event; 59.7% of respondents (95% CI: 51.4% to 67.5%) rated the adverse event as really serious and 48.5% (95% CI: 40.4% to 56.8%) stated prolonged hospitalisation was required as a consequence of the adverse event. Perception of safety in hospitals was largely affected by the experience of an adverse event; really serious events were the most significant predictor of lack of safety in those aged 40 years and over (RR 2.38; p<0.001). CONCLUSION: The experience of adverse events negatively impacted on public confidence in hospitals. The consumer-reported adverse event rate in hospitals (7.0%) is similar to that identified using medical record review. Based on estimates from other studies, self-reported claims of adverse events in hospital by consumers appear credible, and should be considered when developing appropriate treatment regimes
    corecore