41 research outputs found

    Observed urban heat island characteristics in Akure, Nigeria

    Get PDF
    A climatological analysis of the differences in air temperature between rural and urban areas (Tu-r) corroborates the existence of an urban heat island (UHI) in Akure (7º 25’ N, 5º 20’ E), a tropical city in the south western part of Nigeria. The investigations which have been conducted out of a year-long experiment from fixed point observations focuses on the description of the climatology of urban canopy heat island in the Akure and the analysis of the results were presented. The results show that the nocturnal heat island was more frequent than the daytime heat island as it exists from less intense to higher intensity categories throughout the study period. Nocturnal heat Island intensity was observed to be stronger during the dry season. Although of lower intensity, daytime heat Island exists throughout the day except for few hours in the months of November and December that exhibits a reverse thermal contrast. The daytime heat island is observed to be intense in the wet months than the dry months, which may be caused by the evaporative cooling of wet surfaces. On the average, the urban/ rural thermal differences are positive, varying from 4°C at nocturnal hours during dry months to an approximate of 2°C around noon during wet months. This paper explain the aspects of heat islands and their relation to other causative agents such as the sky view factor (SVF) and also discusses its potential impact on energy demand.Key words: Urban heat island, sky view factor, energy demand

    The predictability of precipitation episodes during the West African dry season

    No full text
    Precipitation episodes in tropical West Africa (7-15°N, 10°W-10°E) during the dry season from November to March are rare, but can have significant impacts on human activities reaching from greening of pastures to spoiling harvests and health implications. Previous work has shown a link between these unseasonal rainfalls and extratropical disturbances via a decrease of surface pressure over the Sahara/Sahel and a subsequent inflow of moist air from the Gulf of Guinea. This paper supports the previously stated hypothesis that the extratropical influence leads to a high rainfall predictability through a careful analysis of operational 5 day forecasts from the European Centre for Medium-Range Weather Forecasts' (ECMWF) ensemble prediction system (EPS), which are evaluated using Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) precipitation estimates for the 11 dry seasons 1998/99-2008/09. The long-term regional average of ensemble-mean precipitation lies between the two observational datasets, with GPCP being considerably wetter. Temporal correlations between the ensemble mean and observations are 0.8. Standard probabilistic evaluation methods such as reliability and relative operating characteristic (ROC) diagrams indicate remarkably good reliability, sharpness and skill across a range of precipitation thresholds. However, a categorical verification focusing on the most extreme ensemble mean values indicates too many false alarms. Despite the considerable observational uncertainty the results show that the ECMWF EPS is capable of predicting winter rainfall events in tropical West Africa with good accuracy, at least on regional spatial and synoptic time-scales, which should encourage West African weather services to capitalize more on the valuable information provided by ensemble prediction systems during the dry season

    Estimating rainfall and water balance over the Okavango River Basin for hydrological applications

    Get PDF
    A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in-situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges was evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) data sets. The consistency between the gauges and satellite estimates was considered. A methodology was developed to allow calibration of the rainfall-runoff hydrological model against rain gauge data from 1960-1972, with the prerequisite that the model should be driven by satellite derived rainfall products for the 1990s onwards. With the rain gauge data, addition of a single rainfall station (Longa) in regions where stations earlier were lacking was more important than the chosen interpolation method. Comparison of satellite and gauge rainfall outside the basin indicated that the satellite overestimates rainfall by 20%. A non-linear correction was derived used by fitting the rainfall frequency characteristics to those of the historical rainfall data. This satellite rainfall dataset was found satisfactory when using the Pitman rainfall-runoff model (Hughes et al., this issue). Intensive monitoring in the region is recommended to increase accuracy of the comprehensive satellite rainfall estimate calibration procedur

    Comparisons of urban and rural heat stress conditions in a hot–humid tropical city

    Get PDF
    Background: In recent years the developing world, much of which is located in the tropical countries, has seen dramatic growth of its urban population associated with serious degradation of environmental quality. Climate change is producing major impacts including increasing temperatures in these countries that are considered to be most vulnerable to the impact of climate change due to inadequate public health infrastructure and low income status. However, relevant information and data for informed decision making on human health and comfort are lacking in these countries. Objective: The aim of this paper is to study and compare heat stress conditions in an urban (city centre) and rural (airport) environments in Akure, a medium-sized tropical city in south-western Nigeria during the dry harmattan season (January–March) of 2009. Materials and methods: We analysed heat stress conditions in terms of the mean hourly values of the thermohygrometric index (THI), defined by simultaneous in situ air temperature and relative humidity measurements at both sites. Results: The urban heat island (UHI) exists in Akure as the city centre is warmer than the rural airport throughout the day. However, the maximum UHI intensity occurs at night between 1900 and 2200 hours local time. Hot conditions were predominant at both sites, comfortable conditions were only experienced in the morning and evenings of January at both sites, but the rural area has more pleasant morning and evenings and less of very hot and torrid conditions. January has the lowest frequency of hot and torrid conditions at both sites, while March and February has the highest at the city centre and the airport, respectively. The higher frequencies of high temperatures in the city centre suggest a significant heat stress and health risk in this hot humid environment of Akure. Conclusions: More research is needed to achieve better understanding of the seasonal variation of indoor and outdoor heat stress and factors interacting with it in order to improve the health, safety, and productivity of Akure city dwellers
    corecore