122 research outputs found
Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies
Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription factors sharing a similar N-terminal DNA-binding (D-b) domain, but they observed near-maximal divergence in the C-terminal effector-binding and oligomerization (E-b/O) domain. To elucidate this C-terminal heterogeneity, structural, phylogenetic, and functional analyses were performed on a family that now comprises about 270 members. Our comparative study first focused on the C-terminal E-b/O domains and next on DNA-binding domains and palindromic operator sequences, has classified the GntR members into four subfamilies that we called FadR, HutC, MocR, and YtrA. Among these subfamilies a degree of similarity of about 55% was observed throughout the entire sequence. Structure/function associations were highlighted although they were not absolutely stringent. The consensus sequences deduced for the DNA-binding domain were slightly different for each subfamily, suggesting that fusion between the D-b and E-b/O domains have occurred separately, with each subfamily having its own D-b domain ancestor. Moreover, the compilation of the known or predicted palindromic cis-acting elements has highlighted different operator sequences according to our subfamily subdivision. The observed C-terminal E-b/O domain heterogeneity was therefore reflected on the DNA-binding domain and on the cis-acting elements, suggesting the existence of a tight link between the three regions involved in the regulating process.Peer reviewe
Optimised methods (SDS/PAGE and LC-MS) reveal deamidation in all examined transglutaminase-mediated reactions
L
Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination
A complex of KAP1 and HP1 is needed to tether AID to the H3K9me3-marked donor switch region during CSR
Mammalian Frataxin: An Essential Function for Cellular Viability through an Interaction with a Preformed ISCU/NFS1/ISD11 Iron-Sulfur Assembly Complex
Frataxin, the mitochondrial protein deficient in Friedreich ataxia, a rare autosomal recessive neurodegenerative disorder, is thought to be involved in multiple iron-dependent mitochondrial pathways. In particular, frataxin plays an important role in the formation of iron-sulfur (Fe-S) clusters biogenesis.. Fe-S cluster biosynthesis
Case Files of the California Poison Control System, San Francisco Division: Blue Thunder Ingestion: Methanol, Nitromethane, and Elevated Creatinine
Cell Rep
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55-200 CGG repeats in the 5' UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs) is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery
Reducing false-positive biopsies: a pilot study to reduce benign biopsy rates for BI-RADS 4A/B assessments through testing risk stratification and new thresholds for intervention
Electrospray ionization ion trap mass spectrometry for structural characterization of oligosaccharides derivatized with 2-aminobenzamide
The use of electrospray ionization (ESI) quadrupole ion trap mass spectrometry and reversed-phase high-performance liquid chromatography (HPLC) for the characterization of 2-aminobenzamide (2AB)-labeled oligosaccharides and N-linked protein oligosaccharide mixtures is described. The major signals were obtained under these conditions from the [M+Na]+ ions for all 2AB-derivatized oligosaccharides. Under collision-induced dissociation, sodiated molecular species generated in the ESI mode yield simple and predictable mass spectra. Tandem mass spectrometry (MS/MS) experiments with orders higher than two offer a number of ways to enhance MS/MS spectra and to derive information not present in MS and MS2 spectra. Information on composition, sequence, branching and, to some extent, interglycosidic linkages can be deduced from fragments resulting from the cleavage of glycosidic bonds and from weak cross-ring cleavage products. Reversed-phase HPLC and derivatization by reductive amination using 2-aminobenzamide were finally applied to characterize a glycan pool enzymatically released from glycoprotein
Electrospray ionization ion trap mass spectrometry for structural characterization of oligosaccharides derivatized with 2‐aminobenzamide
Dissociation Kinetics of a Binary Complex in Solution by Protein Displacement
International audience: Kinetics determined by NMR: Whereas most measurements of kinetic parameters of a ligand-protein complex use displacement of the ligand, protein displacement can give accurate off-rates in solution. Analytical and simulation results are given for the apparent off-rate obtained by protein displacement
- …
