148 research outputs found
The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys
We perform forecasts for how baryon acoustic oscillation (BAO) scale and
redshift-space distortion (RSD) measurements from future spectroscopic emission
line galaxy (ELG) surveys such as Euclid are degraded in the presence of
spectral line misidentification. Using analytic calculations verified with mock
galaxy catalogs from log-normal simulations we find that constraints are
degraded in two ways, even when the interloper power spectrum is modeled
correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio
for the power spectrum of the target galaxies, which propagates to all
cosmological constraints and increases with contamination fraction, .
Secondly, degeneracies can open up between and cosmological parameters.
In our calculations this typically increases BAO scale uncertainties at the
10-20% level when marginalizing over parameters determining the broadband power
spectrum shape. External constraints on , or parameters determining the
shape of the power spectrum, for example from cosmic microwave background (CMB)
measurements, can remove this effect. There is a near-perfect degeneracy
between and the power spectrum amplitude for low values, where
is not well determined from the contaminated sample alone. This has the
potential to strongly degrade RSD constraints. The degeneracy can be broken
with an external constraint on , for example from cross-correlation with a
separate galaxy sample containing the misidentified line, or deeper
sub-surveys.Comment: 18 pages, 7 figures, updated to match version accepted by ApJ (extra
paragraph added at the end of Section 4.3, minor text edits
Functional characterization of the cytochrome P450 monooxygenase CYP71AU87 indicates a role in marrubiin biosynthesis in the medicinal plant Marrubium vulgare.
BackgroundHorehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds.ResultsMining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare.ConclusionsIn a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products
Structural characterization of nanofiber silk produced by embiopterans (webspinners)
Embiopterans produce silken galleries and sheets using exceptionally fine silk fibers in which they live and breed. In this study, we use electron microscopy (EM), Fourier-transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WAXD) and solid-state nuclear magnetic resonance (ssNMR) techniques to elucidate the molecular level protein structure of webspinner (embiid) silks. Silks from two species Antipaluria urichi and Aposthonia ceylonica are studied in this work. Electron microscopy images show that the fibers are about 90–100 nm in diameter, making webspinner silks among the finest of all known animal silks. Structural studies reveal that the silk protein core is dominated by β-sheet structures, and that the protein core is coated with a hydrophobic alkane-rich surface coating. FTIR spectra of native embiid silk shows characteristic alkane CH2 stretchings near 2800–2900 cm−1, which decrease approximately 50% after washing the silk with 2 : 1 CHCl3 : MeOH. Furthermore, 13C ssNMR data shows a significant CH2 resonance that is strongly affected by the presence of water, supporting the idea that the silk fibers are coated with a hydrocarbon-rich layer. Such a layer is likely used to protect the colonies from rain. FTIR data also suggests that embiid silks are dominated by β-sheet secondary structures similar to spider and silkworm silk fibers. NMR data confirms the presence of β-sheet nanostructures dominated by serine-rich repetitive regions. A deconvolution of the serine Cβ NMR resonance reveals that approximately 70% of all seryl residues exist in a β-sheet structure. This is consistent with WAXD results that suggest webspinner silks are 70% crystalline, which is the highest crystalline fraction reported for any animal silks. The work presented here provides a molecular level structural picture of silk fibers produced by webspinners
Selective One-Dimensional \u3csup\u3e13\u3c/sup\u3eC-\u3csup\u3e13\u3c/sup\u3eC Spin-Diffusion Solid-State Nuclear Magnetic Resonance Methods to Probe Spatial Arrangements in Biopolymers including Plant Cell Walls, Peptides, and Spider Silk
© 2020 American Chemical Society. All rights reserved. Two-dimensional (2D) and 3D through-space 13C-13C homonuclear spin-diffusion techniques are powerful solid-state nuclear magnetic resonance (NMR) tools for extracting structural information from 13C-enriched biomolecules, but necessarily long acquisition times restrict their applications. In this work, we explore the broad utility and underutilized power of a chemical shift-selective one-dimensional (1D) version of a 2D 13C-13C spin-diffusion solid-state NMR technique. The method, which is called 1D dipolar-assisted rotational resonance (DARR) difference, is applied to a variety of biomaterials including lignocellulosic plant cell walls, microcrystalline peptide fMLF, and black widow dragline spider silk. 1D 13C-13C spin-diffusion methods described here apply in select cases in which the 1D 13C solid-state NMR spectrum displays chemical shift-resolved moieties. This is analogous to the selective 1D nuclear Overhauser effect spectroscopy (NOESY) experiment utilized in liquid-state NMR as a faster (1D instead of 2D) and often less ambiguous (direct sampling of the time domain data, coupled with increased signal averaging) alternative to 2D NOESY. Selective 1D 13C-13C spin-diffusion methods are more time-efficient than their 2D counterparts such as proton-driven spin diffusion (PDSD) and dipolar-assisted rotational resonance. The additional time gained enables measurements of 13C-13C spin-diffusion buildup curves and extraction of spin-diffusion time constants TSD, yielding detailed structural information. Specifically, selective 1D DARR difference buildup curves applied to 13C-enriched hybrid poplar woody stems confirm strong spatial interaction between lignin and acetylated xylan polymers within poplar plant secondary cell walls, and an interpolymer distance of ∼0.45-0.5 nm was estimated. Additionally, Tyr/Gly long-range correlations were observed on isotopically enriched black widow spider dragline silks
The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol)
In recent years, dual-polarisation Doppler X-band radars have become a widely used part of the atmospheric scientist's toolkit for examining cloud dynamics and microphysics and making quantitative precipitation estimates. This is especially true for research questions that require mobile radars. Here we describe the National Centre for Atmospheric Science (NCAS) mobile X-band dual-polarisation Doppler weather radar (NXPol) and the infrastructure used to deploy the radar and provide an overview of the technical specifications. It is the first radar of its kind in the UK. The NXPol is a Meteor 50DX manufactured by Selex- Gematronik (Selex ES GmbH), modified to operate with a larger 2.4m diameter antenna that produces a 0.98 halfpower beam width and without a radome. We provide an overview of the technical specifications of the NXPol with emphasis given to the description of the aspects of the infrastructure developed to deploy the radar as an autonomous observing facility in remote locations. To demonstrate the radar's capabilities, we also present examples of its use in three recent field campaigns and its ongoing observations at the NERC Facility for Atmospheric Radio Research (NFARR)
Direct determination of cellulosic glucan content in starch-containing samples
A simple and highly selective analytical procedure is presented for the determination of cellulosic glucan content in samples that contain both cellulose and starch. This method eliminates the unacceptably large compounding errors of current two-measurement methods. If both starch and cellulose are present before analytical hydrolysis, both will be hydrolyzed to glucose causing bias and inaccuracy in the method. To prevent this interference, the removal of starch prior to cellulosic quantification is crucial. The method presented here is a concise in-series procedure with minimal measurements, eliminating large compounding errors. Sample preparation consists of a starch extraction employing enzymatic hydrolysis followed by a simple filtration and wash. The samples are then subjected to a two-stage acid hydrolysis. The concentration of glucose is determined by ion exchange high-performance liquid chromatography with a Pb2+ column and a refractive index detector. The cellulosic glucan content is calculated based on the initial dry weight of the starting material. Data for the native biomass materials studied show excellent reproducibility, with coefficients of variance of 3.0% or less associated with the method. This selectivity for cellulosic glucan by the procedure was validated with several analytical techniques such as liquid chromatography coupled with mass spectrometry (LC–MS), Raman spectroscopy, and nuclear magnetic resonance
- …