5 research outputs found

    Developing an Observing Air–Sea Interactions Strategy (OASIS) for the global ocean

    Get PDF
    The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.publishedVersio

    Developing an Observing Air–Sea Interactions Strategy (OASIS) for the global ocean

    No full text
    The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean

    Ocean carbon from space: Current status and priorities for the next decade

    Get PDF
    This work is a contribution to the Ocean Colour Radiometry Virtual Constellation (OCR-VC) of the Committee on Earth Observation Satellites (CEOS), through the International Ocean Colour Coordinating Group. This paper is also a contribution towards the preparation of the Aquatic Carbon Roadmap of CEOS over the next couple of years.-- 41 pages, 3 figures, 10 tables.-- Data availability: Data for Fig. 1a were generated from a free Scopus (https://www.scopus.com/) search of the terms "Ocean carbon satellite" (using All fields) in March 2022. Data from Fig. 1b and 1c were generated from the workshop registration and are available within the figure (participation number, geographical representation and gender split)The ocean plays a central role in modulating the Earth’s carbon cycle. Monitoring how the ocean carbon cycle is changing is fundamental to managing climate change. Satellite remote sensing is currently our best tool for viewing the ocean surface globally and systematically, at high spatial and temporal resolutions, and the past few decades have seen an exponential growth in studies utilising satellite data for ocean carbon research. Satellite-based observations must be combined with in-situ observations and models, to obtain a comprehensive view of ocean carbon pools and fluxes. To help prioritise future research in this area, a workshop was organised that assembled leading experts working on the topic, from around the world, including remote-sensing scientists, field scientists and modellers, with the goal to articulate a collective view of the current status of ocean carbon research, identify gaps in knowledge, and formulate a scientific roadmap for the next decade, with an emphasis on evaluating where satellite remote sensing may contribute. A total of 449 scientists and stakeholders participated (with balanced gender representation), from North and South America, Europe, Asia, Africa, and Oceania. Sessions targeted both inorganic and organic pools of carbon in the ocean, in both dissolved and particulate form, as well as major fluxes of carbon between reservoirs (e.g., primary production) and at interfaces (e.g., air-sea and land–ocean). Extreme events, blue carbon and carbon budgeting were also key topics discussed. Emerging priorities identified include: expanding the networks and quality of in-situ observations; improved satellite retrievals; improved uncertainty quantification; improved understanding of vertical distributions; integration with models; improved techniques to bridge spatial and temporal scales of the different data sources; and improved fundamental understanding of the ocean carbon cycle, and of the interactions among pools of carbon and light. We also report on priorities for the specific pools and fluxes studied, and highlight issues and concerns that arose during discussions, such as the need to consider the environmental impact of satellites or space activities; the role satellites can play in monitoring ocean carbon dioxide removal approaches; economic valuation of the satellite based information; to consider how satellites can contribute to monitoring cycles of other important climatically-relevant compounds and elements; to promote diversity and inclusivity in ocean carbon research; to bring together communities working on different aspects of planetary carbon; maximising use of international bodies; to follow an open science approach; to explore new and innovative ways to remotely monitor ocean carbon; and to harness quantum computing. Overall, this paper provides a comprehensive scientific roadmap for the next decade on how satellite remote sensing could help monitor the ocean carbon cycle, and its links to the other domains, such as terrestrial and atmosphereThis work was funded through a European Space Agency (ESA) project “Biological Pump and Carbon Exchange Processes (BICEP)” and by the Simons Foundation Project “Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems (CBIOMES)” (549947, SS). It was also supported by the UK National Centre for Earth Observation (NCEO). Additional support from the Ocean Colour Component of the Climate Change Initiative of the European Space Agency (ESA) is gratefully acknowledged. Robert J. W. Brewin is supported by a UKRI Future Leader Fellowship (MR/V022792/1). Robert J. W. Brewin, Giorgio Dall'Olmo and Gavin H. Tilstone were supported by the Atlantic Meridional Transect Programme. Thomas Frölicher was supported by the Swiss National Science Foundation (Grant No. PP00P2_198897). Astrid Bracher’s contribution is funded by the ESA 656 708 S5P + Innovation Theme 7 Ocean Colour (S5POC) project (No 4000127533/19/I-NS). Jamie Shutler acknowledges support from the ESA Ocean Health Ocean Acidification project (No. AO/1-10757/21/I-DT)With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe
    corecore