173 research outputs found
057 A simple prediction score for significant renal artery stenosis in patients with coronary artery disease
BackgroundRenal artery stenosis (RAS) is a strong independent predictor of mortality in patients (pts) with coronary artery disease (CAD).Aim of studyTo develop and validate a score predicting RAS in patients with CAD.MethodsThree hundred consecutive pts (50 females) with significant CAD underwent abdominal aortography following coronary angiography to screen for significant RAS defined as luminal narrowing of > 50%. Univariate and multivariate analyses were performed comparing pts with and without RAS. Significant factors associated with RAS were included in constructing a score that predicts RAS.The score was internally validated in pts randomly selected from the entire study group (validation group; n=103), using ROC curves and the Hosmer-Lemeshow goodness-of-fit test.ResultsTwenty-seven pts (9%) had a significant RAS. Univariate predictors of significant RAS were: age > 65 years (OR=4.5, p < 0.0001), hypertension (OR=3.6, p=0.001), and female gender (OR=3.6, p=0.015). We found a tendency of more prevalent renal insufficiency (37.1% vs. 21.5%; p=0.05) and the presence of 2 or more significant CAD lesions (70.4% vs. 50.9%; p=0.05) in pts with RAS.Multivariate analysis showed that age > 65 years (OR=4.1%, 95% CI=1.6-10.3, p=0.003) and hypertension (OR=3.1, 95% CI=1.2-7.7, p=0.015) were independent predictors of RAS. The ranged from 0 to 7: 2 points for age > 65 years and hypertension 1 point for female gender, renal insufficiency, and > 3-vessel disease). Internal validation showed a good performance (ROC curve = 0.79 and Chi2 Lemeshow = 3.45). For a score < 2, the negative predictive value is 98%. Applying this criteria, 48.3% of our population would not require systematic abdominal angiography.ConclusionThe performance of our predictive score was good, and significant reduction in the need to perform systematic abdominal aortography could be expected with the use of this score
An elasto-visco-plastic model for immortal foams or emulsions
A variety of complex fluids consist in soft, round objects (foams, emulsions,
assemblies of copolymer micelles or of multilamellar vesicles -- also known as
onions). Their dense packing induces a slight deviation from their prefered
circular or spherical shape. As a frustrated assembly of interacting bodies,
such a material evolves from one conformation to another through a succession
of discrete, topological events driven by finite external forces. As a result,
the material exhibits a finite yield threshold. The individual objects usually
evolve spontaneously (colloidal diffusion, object coalescence, molecular
diffusion), and the material properties under low or vanishing stress may alter
with time, a phenomenon known as aging. We neglect such effects to address the
simpler behaviour of (uncommon) immortal fluids: we construct a minimal, fully
tensorial, rheological model, equivalent to the (scalar) Bingham model.
Importantly, the model consistently describes the ability of such soft
materials to deform substantially in the elastic regime (be it compressible or
not) before they undergo (incompressible) plastic creep -- or viscous flow
under even higher stresses.Comment: 69 pages, 29 figure
Non-Equilibrium in Adsorbed Polymer Layers
High molecular weight polymer solutions have a powerful tendency to deposit
adsorbed layers when exposed to even mildly attractive surfaces. The
equilibrium properties of these dense interfacial layers have been extensively
studied theoretically. A large body of experimental evidence, however,
indicates that non-equilibrium effects are dominant whenever monomer-surface
sticking energies are somewhat larger than kT, a common case. Polymer
relaxation kinetics within the layer are then severely retarded, leading to
non-equilibrium layers whose structure and dynamics depend on adsorption
kinetics and layer ageing. Here we review experimental and theoretical work
exploring these non-equilibrium effects, with emphasis on recent developments.
The discussion addresses the structure and dynamics in non-equilibrium polymer
layers adsorbed from dilute polymer solutions and from polymer melts and more
concentrated solutions. Two distinct classes of behaviour arise, depending on
whether physisorption or chemisorption is involved. A given adsorbed chain
belonging to the layer has a certain fraction of its monomers bound to the
surface, f, and the remainder belonging to loops making bulk excursions. A
natural classification scheme for layers adsorbed from solution is the
distribution of single chain f values, P(f), which may hold the key to
quantifying the degree of irreversibility in adsorbed polymer layers. Here we
calculate P(f) for equilibrium layers; we find its form is very different to
the theoretical P(f) for non-equilibrium layers which are predicted to have
infinitely many statistical classes of chain. Experimental measurements of P(f)
are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte
Plastic Response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain-rate
We analyze in details the atomistic response of a model amorphous material
submitted to plastic shear in the athermal, quasistatic limit. After a linear
stress-strain behavior, the system undergoes a noisy plastic flow. We show that
the plastic flow is spatially heterogeneous. Two kinds of plastic events occur
in the system: quadrupolar localized rearrangements, and shear bands. The
analysis of the individual motion of a particle shows also two regimes: a
hyper-diffusive regime followed by a diffusive regime, even at zero
temperature
Phase transformation of PbSe/CdSe nanocrystals from core-shell to Janus structure studied by photoemission spectroscopy
Photoelectron spectroscopic measurements have been performed, with synchrotron radiation on PbSe/CdSe heteronanocrystals that initially consist of core-shell structures. The study of the chemical states of the main elements in the nanocrystals shows a reproducible and progressive change in the valence-band and core-level spectra under photon irradiation, whatever the core and shell sizes are. Such chemical modifications are explained in light of transmission electron microscopy observations and reveal a phase transformation of the nanocrystals: The core-shell nanocrystals undergo a morphological change toward a Janus structure with the formation of semidetached PbSe and CdSe clusters. Photoelectron spectroscopy gives new insight into the reorganization of the ligands anchored at the surface of the nanocrystals and the modification of the electronic structure of these heteronanocrystals
Soft Dynamics simulation: 2. Elastic spheres undergoing a T1 process in a viscous fluid
Robust empirical constitutive laws for granular materials in air or in a
viscous fluid have been expressed in terms of timescales based on the dynamics
of a single particle. However, some behaviours such as viscosity bifurcation or
shear localization, observed also in foams, emulsions, and block copolymer
cubic phases, seem to involve other micro-timescales which may be related to
the dynamics of local particle reorganizations. In the present work, we
consider a T1 process as an example of a rearrangement. Using the Soft dynamics
simulation method introduced in the first paper of this series, we describe
theoretically and numerically the motion of four elastic spheres in a viscous
fluid. Hydrodynamic interactions are described at the level of lubrication
(Poiseuille squeezing and Couette shear flow) and the elastic deflection of the
particle surface is modeled as Hertzian. The duration of the simulated T1
process can vary substantially as a consequence of minute changes in the
initial separations, consistently with predictions. For the first time, a
collective behaviour is thus found to depend on another parameter than the
typical volume fraction in particles.Comment: 11 pages - 5 figure
What is the future for nuclear fission technology? A technical opinion from the Guest Editors of VSI NFT series and the Editor of the Journal Nuclear Engineering and Design
The Nuclear Fission Technology (NFT) series of Virtual Special Issues (VSIs) for the Journal Nuclear Engineering and Design (J NED) was proposed in 2023, including
the request to potential authors of manuscript to address the following questions:
o For how long will (water-cooling based) large size nuclear reactor survive?
o Will water-technology based SMRs displace large reactors?
o Will non-water-cooling technology SMRs and micro-reactors have an industrial deployment?
o Will breeding technology, including thorium exploitation, have due relevance?
o Will ‘nuclear infrastructure’ (fuel supply, financial framework, competence by regulators for new designs, waste management, etc.) remain or be
sufficiently robust?
Several dozen Guest Editors (GEs), i.e., the authors of the present document, managed the activity together with the Editor-in-Chief (EiC) of the
journal. More than one thousand scientists contributed 470+ manuscripts, not evenly distributed among the geographical regions of the world and not
necessarily addressing directly the bullet-questions, but certainly providing a view of current research being done.
Key conclusions are as follows: (a) Large size reactors are necessary for a sustainable and safe exploitation of nuclear fission technology; (b) The burning of 233U (from
thorium) and 239Pu (from uranium) is unavoidable, as well as recycling residual uranium currently part of waste; (c) Nuclear infrastructures in countries that
currently use, or are entering the use of, fission energy for electricity production need a century planning; (d) The adoption of small reactors for commercial naval
propulsion, hydrogen production and desalination is highly recommended
- …