814 research outputs found

    Beta lives - some statistical perspectives on the capital asset pricing model

    Get PDF
    This note summarizes some technical issues relevant to the use of the idea of excess return in empirical modelling. We cover the case where the aim is to construct a measure of expected return on an asset and a model of the CAPM type is used. We review some of the problems and show examples where the basic CAPM may be used to develop other results which relate the expected returns on assets both to the expected return on the market and other factors

    Investigating the Growth of Algae Under Low Atmospheric Pressures for Potential Food and Oxygen Production on Mars

    Get PDF
    With long-term missions to Mars and beyond that would not allow resupply, a self-sustaining Bioregenerative Life Support System (BLSS) is essential. Algae are promising candidates for BLSS due to their completely edible biomass, fast growth rates and ease of handling. Extremophilic algae such as snow algae and halophilic algae may also be especially suited for a BLSS because of their ability to grow under extreme conditions. However, as indicated from over 50 prior space studies examining algal growth, little is known about the growth of algae at close to Mars-relevant pressures. Here, we explored the potential for five algae species to produce oxygen and food under low-pressure conditions relevant to Mars. These included Chloromonas brevispina, Kremastochrysopsis austriaca, Dunaliella salina, Chlorella vulgaris, and Spirulina plantensis. The cultures were grown in duplicate in a low-pressure growth chamber at 670 ± 20 mbar, 330 ± 20 mbar, 160 ± 20 mbar, and 80 ± 2.5 mbar pressures under continuous light exposure (62–70 μmol m–2 s–1). The atmosphere was evacuated and purged with CO2 after sampling each week. Growth experiments showed that D. salina, C. brevispina, and C. vulgaris were the best candidates to be used for BLSS at low pressure. The highest carrying capacities for each species under low pressure conditions were achieved by D. salina at 160 mbar (30.0 ± 4.6 × 105 cells/ml), followed by C. brevispina at 330 mbar (19.8 ± 0.9 × 105 cells/ml) and C. vulgaris at 160 mbar (13.0 ± 1.5 × 105 cells/ml). C. brevispina, D. salina, and C. vulgaris all also displayed substantial growth at the lowest tested pressure of 80 mbar reaching concentrations of 43.4 ± 2.5 × 104, 15.8 ± 1.3 × 104, and 57.1 ± 4.5 × 104 cells per ml, respectively. These results indicate that these species are promising candidates for the development of a Mars-based BLSS using low pressure (∼200–300 mbar) greenhouses and inflatable structures that have already been conceptualized and designed

    Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma

    Get PDF
    Background Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. Methods We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. Results ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. Conclusion Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma

    X-ray Amorphous and Poorly Crystalline Fe-Containing Phases in Terrestrial Field Environments and Implications for Materials Detected on Mars

    Get PDF
    Recent analyses of X-ray diffraction (XRD) data from the CheMin instrument using the FULLPAT program have documented the presence of X-ray amorphous materials at multiple sites within Gale Crater, Mars. These materials are believed to be to be iron-rich based on chemical data, and at least some of them are believed to be weathering products based on volatile contents. However, the characteristics of these proposed Fe-rich weathering products remain poorly understood. To better understand these X-ray amorphous materials on Mars, we are 1) examining weathering products formed on Fe-rich parent material in terrestrial soils across a range of climatic conditions, and 2) performing burial experiments of Fe- and Mg- rich olivine in these soils. We describe each of these approaches below

    Bipartite Entanglement in Continuous-Variable Cluster States

    Full text link
    We present a study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous-variable quantum computing. A central aim is to compare mathematically-idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations which are experimentally accessible. Adopting widely-used definitions, we first review the key concepts, by analysing a process of teleportation along a continuous-variable quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest M et al., Phys. Rev. Lett. 97 150504 (2006), adapting their definition to the continuous-variable context. Finally we add the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of continuous-variable analogues of measurement-based quantum computation.Comment: 22 page

    Conformational effects on the Circular Dichroism of Human Carbonic Anhydrase II: a multilevel computational study

    Get PDF
    Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor

    Suppression of High Transverse Momentum π0\pi^0 Spectra in Au+Au Collisions at RHIC

    Full text link
    Au+Au, s1/2=200s^{1/2} = 200 A GeV measurements at RHIC, obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors, have all indicated a suppression of neutral pion production, relative to an appropriately normalized NN level. For central collisions and vanishing pseudo-rapidity these experiments exhibit suppression in charged meson production, especially at medium to large transverse momenta. In the PHENIX experiment similar behavior has been reported for π0\pi^0 spectra. In a recent work on the simpler D+Au interaction, to be considered perhaps as a tune-up for Au+Au, we reported on a pre-hadronic cascade mechanism which explains the mixed observation of moderately reduced pp_\perp suppression at higher pseudo-rapidity as well as the Cronin enhancement at mid-rapidity. Here we present the extension of this work to the more massive ion-ion collisions. Our major thesis is that much of the suppression is generated in a late stage cascade of colourless pre-hadrons produced after an initial short-lived coloured phase. We present a pQCD argument to justify this approach and to estimate the time duration τp\tau_p of this initial phase. Of essential importance is the brevity in time of the coloured phase existence relative to that of the strongly interacting pre-hadron phase. The split into two phases is of course not sharp in time, but adequate for treating the suppression of moderate and high pp_\perp mesons.Comment: 19 pages, 10 figure

    Coarse-Graining Protein Structures With Local Multivariate Features from Molecular Dynamics

    Get PDF
    A multivariate statistical theory, local feature analysis (LFA), extracts functionally relevant domains from molecular dynamics (MD) trajectories. The LFA representations, like those of principal component analysis (PCA), are low dimensional and provide a reduced basis set for collective motions of simulated proteins, but the local features are sparsely distributed and spatially localized, in contrast to global PCA modes. One key problem in the assignment of local features is the coarse-graining of redundant LFA output functions by means of seed atoms. One can solve the combinatorial problem by adding seed atoms one after another to a growing set, minimizing a reconstruction error at each addition. This allows for an efficient implementation, but the sequential algorithm does not guarantee the optimal mutual correlation of the sequentially assigned features. Here, we present a novel coarse-graining algorithm for proteins that directly minimizes the mutual correlation of seed atoms by Monte Carlo (MC) simulations. Tests on MD trajectories of two biological systems, bacteriophage T4 lysozyme and myosin II motor domain S1, demonstrate that the new algorithm provides statistically reproducible results and describes functionally relevant dynamics. The well-known undersampling of large-scale motion by short MD simulations is apparent also in our model, but the new coarse-graining offers a major advantage over PCA; converged features are invariant across multiple windows of the trajectory, dividing the protein into converged regions and a smaller number of localized, undersampled regions. In addition to its use in structure classification, the proposed coarse-graining thus provides a localized measure of MD sampling efficiency

    The role of functional single nucleotide polymorphisms of the human glucocorticoid receptor gene NR3C1 in Polish patients with bronchial asthma

    Get PDF
    N363S and ER22/23EK polymorphisms observed within glucocorticoid receptor gene (NR3C1) may play an important role in the development of bronchial asthma. NR3C1 gene is associated with an altered sensitivity to GCs. The aim of the research project was to study the correlation between this NR3C1 gene polymorphisms and occurrence of asthma in the population of Polish asthmatics. Peripheral blood was obtained from 207 healthy volunteers and 221 asthma patients. Genotyping was carried out with PCR-RFLP method. In the groups of patients with uncontrolled moderate asthma and uncontrolled severe disease, the genotype distribution for the investigated polymorphisms was as follows: N363S-AA, AG, GG occurring with 0.881/0.073/0.046 frequency and ER22/23EK-GG, GA, AA occurring with 0.963/0.037/0.000 frequency. Chi-square analysis revealed a significantly different (P < 0.05) distribution between cases and controls for the N363S polymorphisms. The N363S polymorphism of NR3C1 gene is significantly associated with bronchial asthma, susceptibility to the development of moderate to severe form of uncontrolled bronchial asthma
    corecore