42 research outputs found
An Allosteric Pathway in Copper, Zinc Superoxide Dismutase Unravels the Molecular Mechanism of the G93A Amyotrophic Lateral Sclerosis-Linked Mutation
Several different mutations of the protein copper, zinc superoxide dismutase (SOD1) produce the neurodegenerative disorder amyotrophic lateral sclerosis (ALS). The molecular mechanism by which the diverse mutations converge to a similar pathology is currently unknown. The electrostatic loop (EL) of SOD1 is known to be affected in all of the studied ALS-linked mutations of SOD1. In this work, we employ a multiscale simulation approach to show that this perturbation corresponds to an increased probability of the EL detaching from its native position, exposing the metal site of the protein to water. From extensive atomistic and coarse-grained molecular dynamics (MD) simulations, we identify an allosteric pathway that explains the action of the distant G93A mutation on the EL. Finally, we employ quantum mechanics/molecular mechanics MD simulations to show that the opening of the EL decreases the Zn(II) affinity of the protein. As the loss of Zn(II) is at the center of several proposed pathogenic mechanisms in SOD1-linked ALS, the structural effect identified here not only is in agreement with the experimental data but also places the opening of the electrostatic loop as the possible main pathogenic effect for a significant number of ALS-linked SOD1 mutations
On the Mechanism of the Reactivity of 1,3-Dialkylimidazolium Salts under Basic to Acidic Conditions : A Combined Kinetic and Computational Study
Comprehensive spectroscopic kinetic studies illustrate an alternative mechanism for the traditional free-carbene intermediated H/D exchange reaction of 1,3-dialkylimidazolium salts under neutral (D2O) and acidic conditions (DCl/D2O 35wt% solution). The deuteration of high purity [bmim]Cl in D2O is studied at different temperatures, in absence of catalyst or impurities, to yield an activation energy. DFT transition-state modelling, of a small water cluster and [bmim] cation, also yields an activation energy which strongly supports the proposed mechanism. The presence of basic impurities are shown to significantly enhance the exchange reaction, which brings into question the need for further analysis of technical purities of ionic liquids and the implications for a wide range of chemical reactions in such media.Peer reviewe
Design and Synthesis of Potent in Vitro and in Vivo Anticancer Agents Based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole
A novel series of tubulin polymerization inhibitors, based on the 1-(3',4',5'-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted combretastatin A-4 analogues, was synthesized with the goal of evaluating the effects of various patterns of substitution on the phenyl at the 2-position of the imidazole ring on biological activity. A chloro and ethoxy group at the meta- and para-positions, respectively, produced the most active compound in the series (4o), with IC50 values of 0.4-3.8 nM against a panel of seven cancer cell lines. Except in HL-60 cells, 4o had greater antiproliferative than CA-4, indicating that the 3'-chloro-4'-ethoxyphenyl moiety was a good surrogate for the CA-4 B-ring. Experiments carried out in a mouse syngenic model demonstrated high antitumor activity of 4o, which significantly reduced the tumor mass at a dose thirty times lower than that required for CA-4P, which was used as a reference compound. Altogether, our findings suggest that 4o is a promising anticancer drug candidate that warrants further preclinical evaluation
Overview of Financial Inclusion, Regulation, and Education
Financial inclusion is receiving increasing attention for its potential to contribute to economic and financial development while fostering more inclusive growth and greater income equality. Although substantial progress has been made, there is still much to achieve. East Asia, the Pacific, and South Asia combined account for 55% of the world's unbanked adults, mainly in India and the People's Republic of China. This paper surveys the experiences of advanced and emerging economies - Germany, the United Kingdom, Bangladesh, India, Indonesia, the Philippines, Sri Lanka, and Thailand - to assess factors affecting the ability of low-income households and small firms to access financial services, including financial literacy, financial education programs, and financial regulatory frameworks, and to pinpoint policies that can improve their financial access while maintaining financial stability. The study aims to take a practical, holistic approach to issues related to financial inclusion. For example, innovative methods for promoting financial access, such as mobile phone banking and microfinance, require corresponding innovations in regulatory frameworks, perimeters, and capacity. Moreover, programs in the areas of financial education and consumer protection are needed to enable households and small firms to take full advantage of improvements in financial access
Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ): Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis
This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals
The antioxidant N-acetylcysteine prevents the mitochondrial fragmentation induced by soluble amyloid-β peptide oligomers
Background: Soluble amyloid-β peptide oligomers (AβOs), which are centrally involved in the pathogenesis of Alzheimer's disease, trigger Ca 2+ influx through N-methyl-D-aspartate receptors and stimulate reactive oxygen species generation in primary hippocampal neurons. We have previously reported that AβOs promote Ca 2+ release mediated by ryanodine receptors (RyR), which in turn triggers mitochondrial fragmentation. We have also reported that the antioxidant N-acetylcysteine (NAC) prevents AβOs-induced Ca 2+ signal generation. Objectives: To determine if RyR-mediated Ca 2+ release activated by the specific agonist 4-chloro-m-cresol (4-CMC) induces fragmentation of the mitochondrial network, and to ascertain if NAC prevents the mitochondrial fragmentation induced by AβOs and/or 4-CMC. Methods: Mature primary rat hippocampal neurons were incubated for 24 h with sublethal concentrations of AβOs (500 nM) or for 1-3 h with 4-CMC (0.5-1 mM), ±10 mM NAC. Mitochondrial morphology was assesse
Study of differences in the VEGFR2 inhibitory activities between semaxanib and SU5205 using 3D-QSAR, docking, and molecular dynamics simulations
Caballero, J (reprint author), Univ Talca, Ctr Bioinformat & Simulac Mol, 2 Norte 685,Casilla 721, Talca, Chile.Semaxanib (SU5416) and 3[4'-fluorobenzylidene]indolin-2-one (SU5205) are structurally similar drugs that are able to inhibit vascular endothelial growth factor receptor-2 (VEGFR2), but the former is 87 times more effective than the latter. Previously, SU5205 was used as a radiolabelled inhibitor (as surrogate for SU5416) and a radiotracer for positron emission tomography (PET) imaging, but the compound exhibited poor stability and only a moderate IC50 toward VEGFR2. In the current work, the relationship between the structure and activity of these drugs as VEGFR2 inhibitors was studied using 3D-QSAR, docking and molecular dynamics (MD) simulations. First, comparative molecular field analysis (CoMFA) was performed using 48 2-indolinone derivatives and their VEGFR2 inhibitory activities. The best CoMFA model was carried out over a training set including 40 compounds, and it included steric and electrostatic fields. In addition, this model gave satisfactory cross-validation results and adequately predicted 8 compounds contained in the test set. The plots of the CoMFA fields could explain the structural differences between semaxanib and SU5205. Docking and molecular dynamics simulations showed that both molecules have the same orientation and dynamics inside the VEGFR2 active site. However, the hydrophobic pocket of VEGFR2 was more exposed to the solvent media when it was complexed with SU5205. An energetic analysis, including Embrace and MM-GBSA calculations, revealed that the potency of ligand binding is governed by van der Waals contacts. (C) 2011 Elsevier Inc. All rights reserved
Erratum: The Antioxidant N-Acetylcysteine Prevents the Mitochondrial Fragmentation Induced by Soluble Amyloid-F Peptide Oligomers
<i>Background:</i> Soluble amyloid-F peptide oligomers (AFOs), which are centrally involved in the pathogenesis of Alzheimer’s disease, trigger Ca<sup>2+</sup> influx through N-methyl-<i>D</i>-aspartate receptors and stimulate reactive oxygen species generation in primary hippocampal neurons. We have previously reported that AFOs promote Ca<sup>2+</sup> release mediated by ryanodine receptors (RyR), which in turn triggers mitochondrial fragmentation. We have also reported that the antioxidant N-acetylcysteine (NAC) prevents AFOs-induced Ca<sup>2+</sup> signal generation. <i>Objectives:</i> To determine if RyR-mediated Ca<sup>2+</sup> release activated by the specific agonist 4-chloro-m-cresol (4-CMC) induces fragmentation of the mitochondrial network, and to ascertain if NAC prevents the mitochondrial fragmentation induced by AFOs and/or 4-CMC. <i>Methods:</i> Mature primary rat hippocampal neurons were incubated for 24 h with sublethal concentrations of AFOs (500 n<i>M</i>) or for 1–3 h with 4-CMC (0.5–1 m<i>M</i>), w10 m<i>M</i> NAC. Mitochondrial morphology was assessed by confocal microscopy of fixed neurons stained with anti-mHsp70. Intracellular Ca<sup>2+</sup> levels were determined by time series microscopy of neurons preloaded with Fluo-4 AM. <i>Results:</i> Preincubation of neurons for 30 min with NAC prevented the mitochondrial fragmentation induced by AFOs or 4-CMC. In addition, we confirmed that preincubation with NAC abolished the stimulation of RyR-mediated Ca<sup>2+</sup> release induced by AFOs or 4-CMC. <i>Conclusion:</i> The present results strongly suggest that the general antioxidant NAC prevents AFO-induced mitochondrial fragmentation by preventing RyR-mediated Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release. Copyright i 2012 S. Karger AG, Base