86 research outputs found

    A framework for cloud computing adoption in small and medium-sized enterprises : a case of the Accra - Tema metropolis in Ghana

    Get PDF
    Cloud computing adoption and usage is important to achieving business competition. This is done by making it a competitive tool for firms. The adoption of cloud computing enables firms to achieve greater business competency, improve performance, and allows them to maintain their competitive advantage. Since its emergence, there has been a surge in the adoption of cloud computing with research into its adoption primarily concentrated on bigger firms. However, a major characteristic of cloud computing is the anticipated possibilities it holds for small and medium-sized enterprises (SMEs). SMEs typically operate differently from larger firms and are not limited by resource constraints. For SMEs, the reduction in the financial burden normally associated with the adoption of new technologies is a significant benefit of cloud computing due to their financial constraints. In Ghana, SMEs mostly use obsolete technologies and have a slow response towards new technologies. Thus, they are unable to harness the numerous opportunities technology presents to them to stay competitive. Cloud computing is still regarded as a new technology in the business world, therefore research that focuses on its adoption by SMEs to help them stay competitive is minimal. Available research on cloud computing in Ghana does not provide clear guidelines for ensuring a successful adoption process and the continued use of cloud computing services. This study seeks to investigate how a framework can assist SMEs in their use of cloud computing in the Accra-Tema metropolis of Ghana. A knowledge of the factors associated with adoption decisions and those that significantly influence the decision are required to ensure a successful adoption process. The empirical data was gathered using a questionnaire and face-to-face interviews developed from literature and administered to users and potential users of cloud computing. The questionnaire and interviews primarily investigate key adoption factors and the findings are reported in this research study. The findings reveal interesting insights into understanding issues that affect the overall decision to adopt and use cloud computing services by SMEs. The findings show that the adoption of cloud computing can improve information management practices within SMEs. The findings also reveal that several factors need to be considered in the overall decision to adopt and use cloud computing to ensure a successful adoption process. An initial cloud computing adoption model was proposed based on the empirical findings. Key adoption factors of the initial adoption model include adoption benefits and drivers, concerns and barriers, adoption interventions, and information management in the cloud. computing adoption framework. The proposed adoption framework aims to assist SMEs to adopt and use cloud computing services and make them relevant in the global market

    LAMINAR-TURBULENT TRANSITION FLOWS OF NON-NEWTONIAN SLURRIES: MODELS ASSESSMENT

    Get PDF
    ABSTRACT In this study a qualitative assessment of transitional velocity engineering models for predicting non-Newtonian slurry flows in a horizontal pipe was performed using data from wide pipe diameters (25 -268 mm). In addition, Gamma Theta transition model was used to compute selected flow conditions. In general, it was observed that most of the current engineering models predict conservative transitional velocities. However, caution should be exercised in design situations where both pipe diameter and viscoplastic viscosity influence the value of Hedström number. It was found that the Gamma Theta transition model predicted a laminar flow condition in the fully developed region which is contrary to what has been observed in experiment

    Built-in reliability design of highly integrated solid-state power switches with metal bump interconnects

    Get PDF
    A stacked substrate–chip–bump–chip–substrate assembly has been demonstrated in the construction of power switch modules with high power density and good electrical performance. In this paper, special effort has been devoted to material selection and geometric shape of the bumps in the design for improving the thermomechanical reliability of a highly integrated bidirectional switch. Results from3-D finite-element simulation indicate that for all design cases the maximum von Mises stresses and creep strain accumulations occur in the solder joints used to join bumps on IGBTs during a realistic mission profile, but occur in the solder joints used to join bumps on DBC substrates during accelerated thermal cycling. The results from both the simulation and the accelerated thermal cycling experiments reveal that selection of Cu/Mo/Cu composite brick bumps in the stacked assembly can significantly improve the thermomechanical reliability of both the solder joints and the DBC substrates when compared to Cu cylinder bumps and Cu hollow cylinder bumps reported in previous work. Such results can be attributed to the effective reduction in the extent ofmismatch of coefficients of thermal expansion between the different components in the assembly

    Field evaluation of specific mycobacterial protein-based skin test for the differentiation of Mycobacterium bovis-infected and Bacillus Calmette Guerin-vaccinated crossbred cattle in Ethiopia

    Get PDF
    Funder: The Defense Science and Technology LaboratoryFunder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265Funder: Economic and Social Research Council; Id: http://dx.doi.org/10.13039/501100000269Funder: Department for International Development, UK Government; Id: http://dx.doi.org/10.13039/501100000278Funder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268Bovine tuberculosis (bTB) challenges intensive dairy production in Ethiopia and implementation of the test and slaughter control strategy is not economically acceptable in the country. Vaccination of cattle with Bacillus Calmette-Guerin (BCG) could be an important adjunct to control, which would require a diagnostic test to differentiate Mycobacterium bovis (M. bovis)-infected and BCG-vaccinated animals (DIVA role). This study describes an evaluation of a DIVA skin test (DST) that is based on a cocktail (DSTc) or fusion (DSTf) of specific (ESAT-6, CFP-10 and Rv3615c) M. bovis proteins in Zebu-Holstein-Friesians crossbred cattle in Ethiopia. The study animals used were 74 calves (35 BCG vaccinated and 39 unvaccinated) aged less than 3 weeks at the start of experiment and 68 naturally infected 'TB reactor' cows. Six weeks after vaccination, the 74 calves were tested with the DSTc and the single intradermal cervical comparative tuberculin (SICCT) test. The TB reactor cows were tested with the DSTc and the SICCT test. Reactions to the DSTc were not observed in BCG-vaccinated and unvaccinated calves, while SICCT test reactions were detected in vaccinated calves. DSTc reactions were detected in 95.6% of the TB reactor cows and single intradermal tuberculin positive reactions were found in 98.2% (95% confidence interval, CI, 92.1-100%). The sensitivity of the DSTc was 95.6% (95% CI, 87.6-99.1%), and significantly (p < .001) higher than the sensitivity (75%, 95% CI, 63.0-84.7%) of the SICCT test at 4 mm cut-off. DSTf and DSTc reactions were correlated (r = 0.75; 95% CI = 0.53-0.88). In conclusion, the DSTc could differentiate M. bovis-infected from BCG-vaccinated cattle in Ethiopia. DST had higher sensitivity than the SICCT test. Hence, the DSTc could be used as a diagnostic tool for bTB if BCG vaccination is implemented for the control of bTB in Ethiopia and other countries

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials

    Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease.

    Get PDF
    OBJECTIVE: We investigated the accuracy of host markers detected in Mtb antigen-stimulated whole blood culture supernatant in the diagnosis of TB. METHODS: Prospectively, blood from 322 individuals with presumed TB disease from six African sites was stimulated with four different Mtb antigens (Rv0081, Rv1284, ESAT-6/CFP-10, and Rv2034) in a 24 h whole blood stimulation assay (WBA). The concentrations of 42 host markers in the supernatants were measured using the Luminex multiplex platform. Diagnostic biosignatures were investigated through the use of multivariate analysis techniques. RESULTS: 17% of the participants were HIV infected, 106 had active TB disease and in 216 TB was excluded. Unstimulated concentrations of CRP, SAA, ferritin and IP-10 had better discriminating ability than markers from stimulated samples. Accuracy of marker combinations by general discriminant analysis (GDA) identified a six analyte model with 77% accuracy for TB cases and 84% for non TB cases, with a better performance in HIV uninfected patients. CONCLUSIONS: A biosignature of 6 cytokines obtained after stimulation with four Mtb antigens has moderate potential as a diagnostic tool for pulmonary TB disease individuals and stimulated marker expression had no added value to unstimulated marker performance

    Pharyngeal carriage of Neisseria species in the African meningitis belt.

    Get PDF
    OBJECTIVES: Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS: Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. RESULTS: A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8-10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. CONCLUSION: Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt

    Evaluation of the Efficacy of BCG in Protecting Against Contact Challenge With Bovine Tuberculosis in Holstein-Friesian and Zebu Crossbred Calves in Ethiopia

    Get PDF
    Bovine tuberculosis (bTB) is prevalent in intensive dairy farms in Ethiopia. Vaccination could be an alternative control approach given the socio-economic challenges of a test-and-slaughter control strategy. The efficacy of the BCG was evaluated on 40 Holstein-Friesian (HF) and zebu crossbred calves recruited from single intradermal cervical comparative tuberculin (SICCT) test negative herds and randomly allocated into two groups. Twenty-two calves were vaccinated within 2 weeks of age, and 18 were kept as a control. Six weeks post-vaccination, the two groups were exposed and kept mixed with known SICCT test positive cows for 1 year. Immune responses were monitored by interferon gamma (IFN-γ) release assay (IGRA), SICCT test, and antibody assay. Vaccinated calves developed strong responses to the SICCT test at the sixth week post-vaccination, but did not respond to ESAT-6/CFP-10 peptide antigen-based IGRA. During the exposure, IFN-γ response to the specific peptide cocktail [F(2.44, 92.67) = 26.96; p < 0.001] and skin reaction to the specific proteins cocktail [F(1.7, 64.3); p < 0.001] increased progressively in both groups while their antibody responses were low. The prevalence of bTB was 88.9% (95% CI: 65.3–98.6) and 63.6% (95% CI: 40.7–83.8) in the control and vaccinated calves, respectively, based on Mycobacterium bovis isolation, giving a direct protective efficacy estimate of 28.4% (95% CI: −2.7 to 50.1). The proportion of vaccinated calves with lesion was 7.0% (34/484) against 11.4% (45/396) in control calves, representing a 38% (95% CI: 5.8–59.4) reduction of lesion prevalence. Besides, the severity of pathology was significantly lower (Mann–Whitney U-test, p < 0.05) in vaccinated (median score = 2.0, IQR = 0–4.75) than in control (median score = 5, IQR = 3.0–6.25) calves. Moreover, survival from M. bovis infection in vaccinated calves was significantly (log-rank test: χ2 = 6.749, p < 0.01) higher than that of the control calves. In conclusion, the efficacy of BCG was low, but the reduced frequency and severity of lesion in vaccinated calves could suggest its potential role in containing onward transmission

    Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds.</p> <p>Methods</p> <p>A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and <it>de novo </it>molecular design.</p> <p>Results</p> <p>Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified <it>in silico </it>and tested <it>in vitro</it>; eight of them showed anti-malarial activity (IC50 ≤ 10 μM), with six being very effective (IC50 ≤ 1 μM), and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a therapeutic index of more than 6,900 for the most active compound.</p> <p>Conclusions</p> <p>Gradient's metric modelling approach and electron-density molecular representations can be powerful tools in the discovery and design of novel anti-malarial compounds. Since the quantum models are agnostic of the particular biological target, the technology can account for different mechanisms of action and be used for <it>de novo </it>design of small molecules with activity against not only the asexual phase of the malaria parasite, but also against the liver stage of the parasite development, which may lead to true causal prophylaxis.</p
    • …
    corecore