3,510 research outputs found

    Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age

    Get PDF
    Study Design. Mechanical and morphological studies on cadaveric spines. Objective. To explain how spinal level and age influence disc degeneration arising from endplate fracture. Summary of Background Data. Disc degeneration can be initiated by damage to a vertebral body endplate, but it is unclear why endplate lesions, and patterns of disc degeneration, vary so much with spinal level and age. Methods. One hundred seventy-four cadaveric motion segments, from T7–T8 to L5–S1 and aged 19 to 96 years, were subjected to controlled compressive overload to damage a vertebral body. Stress profilometry was performed before and after damage to quantify changes in intradiscal pressure, and compressive stresses in the annulus. Eighty-six of the undamaged vertebral bodies were then sectioned in the midsagittal plane, and the thickness of the central bony endplate was measured from microradiographs. Regression analysis was used to compare the relative influences of spinal level, age, disc degeneration, and sex on results obtained. Results. Compressive overload caused endplate fracture at an average force of 3.4 kN, and reduced motion segment height by an average 1.88 mm. Pressure loss in the adjacent nucleus pulposus decreased from 93% at T8–T9 to 38% at L4–L5 (R2 = 22%, P < 0.001), and increased with age (R2 = 19%, P < 0.001), especially in male specimens. Stress concentrations in the posterior annulus increased after endplate fracture, with the effect being greatest at upper spinal levels (R2 = 7%, P < 0.001). Endplate thickness increased by approximately 50% between T11 and L5 (R2 = 21%, P < 0.001). Conclusion. Endplate fracture creates abnormal stress distributions in the adjacent intervertebral disc, increasing the risk of internal disruption and degeneration. Effects are greatly reduced in the lower lumbar spine, and in young specimens, primarily because of differences in nucleus volume, and materials properties, respectively. Disc degeneration between L4 and S1 may often be unrelated to endplate fracture. Level of Evidence: N/

    Evidence for surprise minimization over value maximization in choice behavior

    Get PDF
    Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior requires agents' to model their environment and minimize surprise about the states they frequent. We propose that choice behavior can be more accurately accounted for by surprise minimization compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance with expected utility models; namely, that in addition to attaining valuable states, agents attempt to maximize the entropy over outcomes and thus 'keep their options open'. We tested this prediction using a simple binary choice paradigm and show that human decision-making is better explained by surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of purely economic motivations in explaining choice behavior and instead emphasize the importance of belief-based motivations

    Fixed points and amenability in non-positive curvature

    Full text link
    Consider a proper cocompact CAT(0) space X. We give a complete algebraic characterisation of amenable groups of isometries of X. For amenable discrete subgroups, an even narrower description is derived, implying Q-linearity in the torsion-free case. We establish Levi decompositions for stabilisers of points at infinity of X, generalising the case of linear algebraic groups to Is(X). A geometric counterpart of this sheds light on the refined bordification of X (\`a la Karpelevich) and leads to a converse to the Adams-Ballmann theorem. It is further deduced that unimodular cocompact groups cannot fix any point at infinity except in the Euclidean factor; this fact is needed for the study of CAT(0) lattices. Various fixed point results are derived as illustrations.Comment: 33 page

    Standardising outcomes for clinical trials and systematic reviews

    Get PDF
    Fifteen years ago, what was to become OMERACT met for the first time in The Netherlands to discuss ways in which the multitude of outcomes in assessments of the effects of treatments for rheumatoid arthritis might be standardised. In Trials, Tugwell et al have described the need for, and success of, this initiative [1] and Cooney and colleagues have set out their plans for a corresponding initiative for ulcerative colitis [2]. Why do we need such initiatives? What\u27s the problem? And are these and other initiatives the solution

    New Sum Rules from Low Energy Compton Scattering on Arbitrary Spin Target

    Full text link
    We derive two sum rules by studying the low energy Compton scattering on a target of arbitrary (nonzero) spin j. In the first sum rule, we consider the possibility that the intermediate state in the scattering can have spin |j \pm 1| and the same mass as the target. The second sum rule applies if the theory at hand possesses intermediate narrow resonances with masses different from the mass of the scatterer. These sum rules are generalizations of the Gerasimov-Drell-Hearn-Weinberg sum rule. Along with the requirement of tree level unitarity, they relate different low energy couplings in the theory. Using these sum rules, we show that in certain cases the gyromagnetic ratio can differ from the "natural" value g=2, even at tree level, without spoiling perturbative unitarity. These sum rules can be used as constraints applicable to all supergravity and higher-spin theories that contain particles charged under some U(1) gauge field. In particular, applied to four dimensional N=8 supergravity in a spontaneously broken phase, these sum rules suggest that for the theory to have a good ultraviolet behavior, additional massive states need to be present, such as those coming from the embedding of the N=8 supergravity in type II superstring theory. We also discuss the possible implications of the sum rules for QCD in the large-N_c limit.Comment: 18 pages, v2: discussion on black hole contribution is included, references added; v3: extended discussion in introduction, version to appear in JHE

    Presynaptic actions of 4-Aminopyridine and Îł-aminobutyric acid on rat sympathetic ganglia in vitro

    Get PDF
    Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane

    Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.

    Get PDF
    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required

    Assessing sedimentation equilibrium profiles in analytical ultracentrifugation experiments on macromolecules: from simple average molecular weight analysis to molecular weight distribution and interaction analysis

    Get PDF
    Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium in the analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is particularly powerful when used in conjunction with its sister technique, namely sedimentation velocity analysis. We describe key approaches now available and their application to the characterisation of antibodies polysaccharides and glycoconjugates. We indicate how major complications such as thermodynamic non-ideality can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor DonWinzor over several decades of research

    Characterization of four subtypes in morphologically normal tissue excised proximal and distal to breast cancer

    Get PDF
    Widespread mammographic screening programs and improved self-monitoring allow for breast cancer to be detected earlier than ever before. Breast-conserving surgery is a successful treatment for select women. However, up to 40% of women develop local recurrence after surgery despite apparently tumor-free margins. This suggests that morphologically normal breast may harbor early alterations that contribute to increased risk of cancer recurrence. We conducted a comprehensive transcriptomic and proteomic analysis to characterize 57 fresh-frozen tissues from breast cancers and matched histologically normal tissues resected proximal to (<2 cm) and distant from (5–10 cm) the primary tumor, using tissues from cosmetic reduction mammoplasties as baseline. Four distinct transcriptomic subtypes are identified within matched normal tissues: metabolic; immune; matrisome/epithelial–mesenchymal transition, and non-coding enriched. Key components of the subtypes are supported by proteomic and tissue composition analyses. We find that the metabolic subtype is associated with poor prognosis (p < 0.001, HR6.1). Examination of genes representing the metabolic signature identifies several genes able to prognosticate outcome from histologically normal tissues. A subset of these have been reported for their predictive ability in cancer but, to the best of our knowledge, these have not been reported altered in matched normal tissues. This study takes an important first step toward characterizing matched normal tissues resected at pre-defined margins from the primary tumor. Unlocking the predictive potential of unexcised tissue could prove key to driving the realization of personalized medicine for breast cancer patients, allowing for more biologically-driven analyses of tissue margins than morphology alone
    • …
    corecore