7,573 research outputs found

    Computational thermo-fluid dynamics contributions to advanced gas turbine engine design

    Get PDF
    The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine

    A numerical simulation of the inviscid flow through a counter-rotating propeller

    Get PDF
    The results of a numerical simulation of the time-averaged inviscid flow field through the blade rows of a multiblade row turboprop configuration are presented. The governing equations are outlined along with a discussion of the solution procedure and coding strategy. Numerical results obtained from a simulation of the flow field through a modern high-speed turboprop will be shown

    Measurements of the unsteady flow field within the stator row of a transonic axial-flow fan. 1: Measurement and analysis technique

    Get PDF
    This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within high speed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctuations, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper

    Random packing of spheres in Menger sponge

    Full text link
    Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.Comment: 13 pages, 6 figure

    The effect of boldness on decision-making in barnacle geese is group-size-dependent

    Get PDF
    In group-living species, decisions made by individuals may result in collective behaviours. A central question in understanding collective behaviours is how individual variation in phenotype affects collective behaviours. However, how the personality of individuals affects collective decisions in groups remains poorly understood. Here, we investigated the role of boldness on the decision-making process in different-sized groups of barnacle geese. Naive barnacle geese, differing in boldness score, were introduced in a labyrinth in groups with either one or three informed demonstrators. The demonstrators possessed information about the route through the labyrinth. In pairs, the probability of choosing a route prior to the informed demonstrator increased with increasing boldness score: bolder individuals decided more often for themselves where to go compared with shyer individuals, whereas shyer individuals waited more often for the demonstrators to decide and followed this information. In groups of four individuals, however, there was no effect of boldness on decision-making, suggesting that individual differences were less important with increasing group size. Our experimental results show that personality is important in collective decisions in pairs of barnacle geese, and suggest that bolder individuals have a greater influence over the outcome of decisions in groups

    Social Welfare in One-Sided Matching Mechanisms

    Full text link
    We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of Ω(n)\Omega(\sqrt{n}) on the Price of Anarchy, which applies to all mechanisms. We show that two well-known mechanisms, Probabilistic Serial, and Random Priority, achieve a matching upper bound. We extend our lower bound to the Price of Stability of a large class of mechanisms that satisfy a common proportionality property, and show stronger bounds on the Price of Anarchy of all deterministic mechanisms

    Freeze-out dynamics via charged kaon femtoscopy in √ sNN = 200 GeV central Au + Au collisions

    Get PDF
    We present measurements of three-dimensional correlation functions of like-sign, low-transverse-momentum kaon pairs from √sNN=200 GeV Au+Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event-generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass mT over the interval of 0.55≤mT≤1.15 GeV/c2. While the kaon radii are adequately described by the mT -scaling in the outward and sideward directions, in the longitudinal direction the lowest mT value exceeds the expectations from a pure hydrodynamical model prediction

    Erratum: Measurement of D^{∗±} production in deep inelastic scattering at HERA

    Get PDF
    The ZEUS collaborationIn the analysis for our paper on D* production, the beauty contribution was erroneously subtracted twice in the extraction of the reduced cross sections. This affected tables 9 and 10 as well as figures 9 and 10 that are reproduced here in a corrected version. The kinematical acceptances shown in the last colum of table 10 have been also corrected since they were calculated with a different value for the charm fragmentation fraction than what was used in the rest of the analysis and reported in the text. A misprint was found in table 7: the value in the third column at four rows from the bottom should read 49.8, not 59.8. Finally, one of the authors was missing from the author list: C. Uribe-Estrada (Department of Physics, University of Oxford, United Kingdom).Article funded by SCOAP

    Interferometry with Bose-Einstein Condensates in Microgravity

    Full text link
    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia
    corecore