82 research outputs found

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Scabrous is distributed via signaling filopodia to modulate Notch response during bristle patterning in Drosophila.

    No full text
    During development, cells in tissues must be patterned correctly in order to support tissue function and shape. The sensory bristles of the peripheral nervous system on the thorax of Drosophila melanogaster self-organizes from a unpatterned epithelial tissue to a regular spot pattern during pupal stages. Wild type patterning requires Notch-mediated lateral inhibition. Scabrous is a protein that can bind to and modify Notch receptor activity. Scabrous can be secreted, but it is also known to be localized to basal signaling filopodia, or cytonemes, that play a role in long-range Notch signaling. Here we show that Scabrous is primarily distributed basally, within the range of signaling filopodia extension. We show that filamentous actin dynamics are required for the distribution of Scabrous protein during sensory bristle patterning stages. We show that the Notch response of epithelial cells is sensitive to the level of Scabrous protein being expressed by the sensory bristle precursor cell. Our findings at the cell-level suggest a model for how epithelial cells engaged in lateral inhibition at a distance are sensitive local levels of Scabrous protein
    • 

    corecore