45,595 research outputs found

    Multiple zero modes of the Dirac operator in three dimensions

    Get PDF
    One of the key properties of Dirac operators is the possibility of a degeneracy of zero modes. For the Abelian Dirac operator in three dimensions the construction of multiple zero modes has been sucessfully carried out only very recently. Here we generalise these results by discussing a much wider class of Dirac operators together with their zero modes. Further we show that those Dirac operators that do admit zero modes may be related to Hopf maps, where the Hopf index is related to the number of zero modes in a simple way.Comment: Latex file, 20 pages, no figure

    Chern-Simons action for zero-mode supporting gauge fields in three dimensions

    Get PDF
    Recent results on zero modes of the Abelian Dirac operator in three dimensions support to some degree the conjecture that the Chern-Simons action admits only certain quantized values for gauge fields that lead to zero modes of the corresponding Dirac operator. Here we show that this conjecture is wrong by constructing an explicit counter-example.Comment: version as published in PRD, minor change

    Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time

    Get PDF
    We present a single-molecule tool called the CoPro (Concentration of Proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrates its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a 4-fold shift towards higher values in concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, which is almost exclusively localized in the nucleus under high and..

    Radial vibrations of BPS skyrmions

    Get PDF
    We study radial vibrations of spherically symmetric skyrmions in the BPS Skyrme model. Concretely, we numerically solve the linearised field equations for small fluctuations in a skyrmion background, both for linearly stable oscillations and for (unstable) resonances. This is complemented by numerical solutions of the full nonlinear system, which confirm all the results of the linear analysis. In all cases, the resulting fundamental excitation provides a rather accurate value for the Roper resonance, supporting the hypothesis that the BPS Skyrme model already gives a reasonable approximate description of this resonance. Further, for many potentials additional higher resonances appear, again in agreement with known experimental results.Comment: Latex, 41 pages, 22 pdf figures; v2: minor change

    Roper resonances and quasi-normal modes of Skyrmions

    Get PDF
    Radial vibrations of charge one hedgehog Skyrmions in the full Skyrme model are analysed. We investigate how the properties of the lowest resonance modes (quasi normal modes) - their frequencies and widths - depend on the form of the potential (value of the pion mass as well as the addition of further potentials) and on the inclusion of the sextic term. Then we consider the inverse problem, where certain values for the frequencies and widths are imposed, and the field theoretic Skyrme model potential giving rise to them is reconstructed. This latter method allows to reproduce the physical Roper resonances, as well as further physical properties of nucleons, with high precision.Comment: LaTex, 24 pages, 18 figure

    BPS Skyrme neutron stars in generalized gravity

    Get PDF
    We study the coupling of nuclear matter described by the BPS Skyrme model to generalized gravity. Concretely, we consider the Starobinsky model which provides the leading-order correction to the Einstein-Hilbert action. Static solutions describing neutron stars are found both for the full field theory and for the mean-field approximation. We always consider the full Starobinsky model in the nonperturbative approach, using appropriately generalized shooting methods for the numerical neutron star calculations. Many of our results are similar to previous investigations of neutron stars for the Starobinsky model using other models of nuclear matter, but there are some surprizing discrepancies. The "Newtonian mass" relevant for the surface redshift, e.g., results larger than the ADM mass in our model, in contrast to other investigations. This difference is related to the particularly high stiffness of nuclear matter described by the BPS Skyrme model and offers an interesting possibility to distinguish different models of nuclear matter within generalized gravity.Comment: LaTex, 28 pages, 13 figures; v2: minor change
    corecore