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Abstract. We stu d y  th e  coupling of nuclear m a tte r  described by th e  B PS  Skyrm e m odel 

to  generalized gravity. C oncretely, we consider th e  S tarob insky  m odel w hich provides th e  

leading-order correction  to  th e  E inste in -H ilbert action . S ta tic  solutions describ ing neu tro n  

s ta rs  are found b o th  for th e  full field th eo ry  and  for th e  m ean-field approx im ation . We always 

consider th e  full S tarob insky  m odel in th e  n o n p ertu rb a tiv e  approach , using appropria te ly  

generalized shooting  m ethods for th e  num erical n eu tro n  s ta r  ca lcu lations. M any of our 

resu lts are  sim ilar to  previous investigations of n eu tro n  s ta rs  for th e  S tarob insky  m odel using 

o th er m odels of nuclear m a tte r , b u t th e re  are some surprising  discrepancies. T he ’’N ew tonian 

m ass” relevant for th e  surface redshift, e.g., resu lts larger th a n  th e  AD M  m ass in our m odel, 

in co n tra st to  o th e r investigations. T his difference is re la ted  to  th e  p articu la rly  high stiffness 

of nuclear m a tte r  described by th e  B PS Skyrm e m odel and  offers an  in teresting  possib ility  

to  d istinguish  different m odels of nuclear m a tte r  w ith in  generalized gravity.
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1 Introdu ction

Sufficiently m assive s ta rs  end up  e ith er as black holes or as n eu tro n  s ta rs  [1- 3], in general. 

N eu tro n  s ta rs  are, therefore, th e  rem nan ts of m any of th e  m ost m assive s ta rs  in our universe. 

T hey  have typ ical radii of roughly 10 km  and  m asses a round  th e  m ass of th e  Sun, hence 

th ey  provide in teresting  scenarios in w hich G eneral R ela tiv ity  (G R) plays an  im p o rtan t role. 

Besides, n eu tro n  s ta rs  are essentially  com posed of neu trons a t very high densities. T he 

s tu d y  of these stars , therefore, also allows to  ex tra c t in form ation  ab o u t nuclear m a tte r  and, 

in p articu la r, ab o u t its  equation  of s ta te  (EoS), p(p), w hich re la tes th e  pressure p  and th e  

energy density  p, a t  densities th a t  are  still no t accessible in m an-m ade laboratories.

N eu tron  s ta rs  are affected by in tense g rav ita tio n al fields (m ore precisely, by high cu r

v a tu re  effects) m ore strongly  th a n  any o th e r cu rren tly  observable physical system  in th e  

universe. T hey  are, therefore, perfect n a tu ra l labora to ries to  investigate th e  consequences of 

th is  high curvatu re . In  p articu la r, th ey  allow us to  s tu d y  deviations from  G eneral R ela tiv ity  

and to  co n stra in  th e  free p aram eters  in theories describ ing these deviations, or even to  d iscard  

th em  by com paring  th e ir  p red ic tions w ith  th e  observed d a ta . Such deviations, or E x tended  

T heories of G rav ity  (E T G ), are com pletely  n a tu ra l from  an  effective field th eo ry  po in t of 
view, w here q u an tu m  grav ity  corrections should induce fu rth e r term s in th e  low-energy ef

fective ac tion  of th e  g rav ita tio n al field, in ad d ition  to  th e  E inste in -H ilbert (EH) action . T he 

f (R )  theories [4- 9] are a specific class of these E T G  in w hich th e  E H  ac tion  linear in th e  Ricci 

scalar R  is replaced by a generic function  f  (R ). T hese theories are m otivated , first, by th e ir 

relative sim plicity  w hen it comes to  solve th e  m odified E inste in  equations and , second, from  

a cosm ological po in t of view, by th e  possib ility  to  explain  th e  acceleration of th e  universe
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(th e  d ark  energy problem ) or th e  abundance of non-baryonic m a tte r  in th e  galaxies (th e  dark  

m a tte r  problem ) th an k s  to  th e  presence of an  add itiona l degree of freedom , which is usually  

re la ted  to  a scalar field known as th e  scalaron. Besides, these f  (R ) theories lead to  m odified 

E inste in  equations w hich are of m ore th a n  second order, b u t th ey  avoid th e  O strogradski 

in stab ility  [10, 11].
In  p articu la r, we shall consider th e  theo ry

f  (R ) =  R  -  a R 2 (1.1)

(th e  m inus sign in front of th e  q u ad ra tic  te rm  is because of our m etric  convention (2.3)), 

also know n as th e  S tarob insky  m odel [12]. T he reason for th is  choice is th a t  s tan d a rd  G R  

is in excellent agreem ent w ith  all cu rren t astrophysical and  cosm ological observations. Any 
ex tension  of GR, therefore, should approach  G R  in th e  lim it of sm all cu rvatu re . B u t th e  

m ost n a tu ra l way to  achieve th is is by a power series expansion f  (R) =  R  +  ^ °=2 ci R i , and 

th e  te rm  q u ad ra tic  in R  is th e  lead ing-order correction  to  th e  E H  action.

T he usual procedure to  solve n eu tro n  s ta rs  is th e  Tolm an-O ppenheim er-V olkoff (TO V ) 

[13, 14] approach , in w hich th e  E inste in  equations are solved assum ing a perfect-fluid stress- 

energy tensor. To close th e  set of equations, an  EoS is needed which should resu lt from  a 

th eo ry  of nuclear m a tte r  (i.e., strongly  in te rac tin g  m a tte r  in th e  low-energy sector). As Q uan

tu m  C hrom odynam ics (Q C D ) is n o n -p e rtu rb a tiv e  a t low energies, we cu rren tly  are no t able 
to  use it to  derive an  EoS for nuclear m a tte r. T he EoS is ob ta ined  e ith e r from  phenom enolog

ical m odels of nuclear physics which are a t least p a rtia lly  determ ined  by experim ental fits, or 

from  effective field theories (E F T ) m otiva ted  by som e argum ents from  th e  fundam en tal th e 

ory. T he Skyrm e m odel [15, 16] is an  in teresting  E F T , principally  m otiva ted  by th e  large N c 

lim it [17, 18] of Q CD, in w hich baryons and  nuclei are collective (solitonic) exc ita tions of th e  

fundam en tal field [19- 22]. T he s tan d a rd  version of th e  Skyrm e m odel (th e  m odel originally 

proposed in [16]) has been applied  to  th e  descrip tion  of nucleons [23] and  som e light nuclei 

(see, e.g., [24- 26]) w ith  ce rta in  success. M oreover, in th e  last decade several generalizations 

have been in troduced  [27- 33] w hich lead to  significant im provem ents of th e  shortcom ings of 

th e  original Skyrm e m odel. In  p articu la r, in th is  p ap er we will use an  extension of th e  m odel 

known as th e  B PS  Skyrm e m odel [27, 34- 36]. T he B P S  Skyrm e m odel has B PS  solutions, 

i.e., th e  m ass of its  solutions is quan tized  by its topological charge (which is identified w ith  

th e  baryonic num ber). Therefore, th e  m odel is capable of describ ing th e  sm all b inding en

ergies of physical nuclei [37]. F u rth er, w hen considered as a subm odel w ith in  th e  class of 

generalized Skyrm e m odels, th e  B P S  Skyrm e m odel provides th e  leading co n trib u tio n  to  th e  

nuclear EoS a t large densities [38], so its inclusion is unavoidable for a realistic  descrip tion  of 
nuclear m a tte r  a t high density. In  add ition , it im plies an o th er in teresting  p roperty : th e  T O V  

procedure requires a perfect-fluid stress-energy tenso r b u t, usually, an  E F T  does no t describe 

a perfect fluid, hence to  re la te  th e  pressure and  th e  energy density, a m acroscopic (m ean- 

field) app rox im ation  m ust be used. T his m ean-field approx im ation  defines, by construc tion , a
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spatia lly  co n stan t energy density  and, therefore, a baro tro p ic  EoS. G ravity, however, couples 

to  th e  derivatives of th e  fields, so any dev ia tion  from  sp a tia l constancy  can p roduce effects in 

th e  observables. T he B PS  Skyrm e m odel stress-energy tenso r has th e  form  of a perfect fluid 

[39, 40], so we can  couple th e  m icroscopic (exact) degrees of freedom  to  grav ity  or consider 

a m ean-field approx im ation , and  com pare th e  resu lting  effects.

T his p ap er is organised as follows: In  th e  second section we w rite  down th e  m odified 

E inste in  equations and  th e  resu lting  system  of o rd inary  differential equations (O D E) w hen 

spherical sym m etry  is im posed. F u rth er, we discuss th e  in te rp re ta tio n  of th e  new degree of 

freedom  in th e  f (R )  theories. In  th e  th ird  section we briefly discuss th e  relevant aspects of 

th e  B PS  Skyrm e m odel. In  section 4, we perform  a num erical analysis to  solve th e  equations. 

To do  th a t,  a double shooting  m ethod  is required  to  find th e  correct in itia l conditions. In 

th e  fifth section we present th e  resu lts of our in tegra tion , and  in th e  last section we discuss 

these resu lts and  our conclusions. O ur calcu lations are perform ed in th e  Jo rd a n  fram e w ith  

th e  m etric  form alism . We choose un its  such th a t  th e  speed of light c =  1. For lengths and 

m asses we use e ith er astrophysical un its (km  and  solar m asses M©) or nuclear physics un its 

(fm  and  M eV).

2 G eneralized  E instein  equations

T he f (R )  theories consist in th e  following m odification  of th e  E inste in -H ilbert action,

S  =  2K /  f  (R ) +  ^matter, (2.1)

w here k =  8 n G /c 4, g denotes th e  d e te rm in an t of th e  m etric  and  f  (R) is a generic 

function  of th e  R icci scalar R. G eneral R ela tiv ity  can  be recovered by se ttin g  f  (R ) =  R.

T he new E inste in  equations m ay be ob ta in ed  by varying th is  ac tion  w ith  respect to  th e  

m etric  following [41].

T hen  th e  m odified E inste in  equations are

f R R p.v — 2gp-vf  — (V  ̂ V  v — V “ V a ) f R =  (2 .2)

w here f R denotes th e  derivative of f  w ith  respect to  R.

Now, to  o b ta in  a system  of differential equations we have to  w rite  an  explicit form  of 

th e  m etric. As we are m odeling s ta tic  n eu tro n  stars , we will choose th e  spherically  sym m etric 

ansa tz  w ith  th e  following signature,

d s2 =  A  d t2 — B  d r2 — r 2 (dd2 +  sin2 d d g 2) . (2.3)

T he first difference w ith  respect to  G eneral R ela tiv ity  is th a t  now th e  Ricci scalar is

no t fixed (algebraically) ju s t by th e  value of th e  pressure and  th e  energy density. In stead ,

trac in g  th e  equ a tio n  (2.2) we o b ta in  a second order differential equation  for R  th a t  we have
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to  solve. T he key po in t is th a t  we now have an  add itional degree of freedom  in com parison 

to  th e  G eneral R ela tiv ity  case, precisely provided by th e  f R(R ) te rm . T he equations for th e  

m etric  com ponents A  and  B  can  be ob ta in ed  from  th e  t t  and  r r  com ponents, respectively. 

We also need an  equation  to  describe th e  pressure along th e  rad ius of th e  s ta r, w hich is easily 

ob ta ined  from  th e  conservation of th e  stress-energy tensor: V mT mv =  0. T he resu lting  system  

of o rd inary  differential equations is (B ' =  (d /d r )B , etc.)

B ' =
2 rB

3 f R K B <P +  3P) -  B f  -  f R (  - +  ^ -  ( ! A  +  3 1  f2R R '

P
p +  p  A '

A ’

A 'B ' A '2 
A '' =  — —  +-------

2B +  2A +  rB
2 B 'A  2 A  (  k B f  ( A '  2 , .

+  f R  ( - 2 B p  +  ~2T +  ( 2 4  +  r  f  2RR

Br>'' _ f3R tx'2
R  =  -  f R R  -  3f2R (  k  (p - 3 p ) + 2 f  - fR R ) +  ( -  + 2 B -  2 )  r '.

(2.4)

(2.5)

(2.6)

(2.7)

T his is a system  of 4 equations for th e  5 unknow ns A, B , R, p and  p  and, therefore, one 

add itional equation  is required  to  close th e  system . F u rth er, f 2R(R) =  (d 2/ d R 2) f , etc.

2.1 C orrespondence betw een  f(R)  gravity and scalar-tensor theories

N ext, we will briefly com m ent on th e  re la tion  betw een f (R )  theories and  sca lar-tensor theories. 

T hey  are, in fact, com pletely  equivalent. As explained, we will focus on th e  th eo ry  f ( R )  =  

R  -  a R 2, w hich has th e  im p o rtan t p ro p e rty  th a t  f 2R(R ) =  0.

T he B rans-D icke ac tion  [42] takes th e  form

S b d  =  2 k  /  d4x V - g
w

0 R  -  - g ^ vV ^ V v 0  -  V (0) +  S .matter. (2.8)

To see th e  correspondence, we can  rew rite  th e  ac tion  (2.1) in a new dynam ically  equivalent 

form  w ith  a new scalar field x ,

1
s  =  2k  /  d4x f  (x) +  f ' (x ) (R  -  x ) ) .

(2.9)

From  th e  scalar field equation  we find th a t  R  =  x  iff f 2R(x) =  0, th en  redefining th e  scalar 

field as 0  :=  f '( x )  and  V (0) =  x (0 )0  -  f  (0) we arive a t th e  B rans-D icke ac tion  for w =  0.
From  th e  ac tion  (2.8) we can  define th e  m ass of th e  scalar field 0, by o b ta in ing  its 

equation  of m otion and  identify ing th e  te rm s w ith  those of th e  K lein-G ordon equation . T he 

E inste in  equations and th e  scalar field equ a tio n  of th is  action  are

w 1 w
0 G ^v +  2 0 g ^VV« 0 V ° 0  +  2 g^vV (0) -  0 V A V v0 -  (V ^ V v -  g^vV « V ° )0  =  ’ (2 .10)

1
□ 0  -

3 +  2w
(kT  +  0 V '(0 )  -  2 V (0 )) =  0. (2.11)
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T he equa tion  of m otion of th e  field can be expressed as a K lein-G ordon equation , defin-

so lution 0 ( r )  a  exp (—m(4>)r) / r  w ith  m  defined as explained above. Now we can  o b ta in  th e  

m ass of th e  new degree of freedom  in our th eo ry  in te rm s of f (R ) and  its  derivatives. S etting  

w =  0 and  th e  p o ten tia l given above we have for a generic f  (R) th eo ry  [44]

of a  m ust be positive in order to  have a real scalar field.

3 T he B P S  Skyrm e m odel and its EoS

As explained, we need a fu rth e r re la tion  to  close th e  system  of equations (2.4) - (2.7) , and

inside a n eu tro n  s ta r. Concretely, we shall use th e  B P S  Skyrm e m odel as our m odel of 

nuclear m a tte r, which provides us w ith  tw o possibilities to  re la te  th e  pressure and  th e  energy 

density. We m ay e ith er derive th e ir  exact expressions in te rm s of th e  (m icroscopic) Skyrm e 

field variables from  th e  stress-energy tensor, th u s coupling th e  m icroscopic degrees of freedom  

to  gravity, or we m ay perform  a m ean-field app rox im ation  to  o b ta in  a baro tro p ic  EoS.

3.1 Exact case

T he B P S  Skyrm e m odel in flat (M inkowski) space is given by th e  lag rang ian  [27 |

will be specified in th e  next sections. We will, however, always assum e th a t  th e  po ten tia l 

only depends on th e  trace  of U , i.e., on th e  Skyrm e profile function  £, U  =  U (£), such th a t  

it breaks chiral sym m etry  b u t respects isospin. F u rth er, Bp is th e  topological cu rren t of th e  

m odel w hich is defined in te rm s of th e  fundam en tal SU(2) field U of th e  theory, and  from  

w hich th e  baryon num ber N  can  be calcu lated  as a topologically  conserved charge (we use 

N  to  deno te  th e  baryon num ber to  avoid confusion w ith  th e  m etric  com ponent B ).

O ne of th e  in teresting  p roperties  of th e  B PS Skyrm e m odel, and  th e  reason of its nam e, 

is th a t  we can  find B PS  solutions th a t  sa tu ra te  a B ogom ol’nyi bound  [45]. T his bound  can 

be ex trac ted  from  th e  s ta tic  energy functional, and  it leads to  a B PS  equation  which can 

be solved analy tica lly  [27] and  yields solutions whose energy is exactly  p rop o rtio n a l to  th e

ing an  effective p o ten tia l [43 , 44], =  — ( ^ V ' — 2 V ). T hen  th e  m ass is re la ted  to  th e

second derivative of th is  effective po ten tia l, and  equa tion  (2.11) adm its  th e  usual Yukawa-like
3+2w

(2.12)

In  our case f  (R) =  R  — a R 2, we o b ta in  th a t  th e  m ass of th e  field is m 2 =  6 a , th u s  th e  sign

th is  re la tion  should be derived from  a m odel for nuclear m a tte r  relevant for th e  conditions

L b p s  =  Lo +  Le =  —̂ 2U  (U ) — A V B v  B v ,

L p =  U ^d^U, U  =  e ^ nT =  cos £ I  +  sin £ nT  e  SU(2),

(3.1)

(3.2)

(3.3)

w here ^ 2 and  A2 are co n stan ts  fixed by nuclear experim ental d a ta  and  U  is a p o ten tia l th a t
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baryonic num ber, w hich is a welcome p ro p e rty  w hich physical nuclei obey approxim ately .

To derive th is  equation  we ju s t  have to  reconstruc t th e  B ogom ol’nyi bound  in th e  energy

functional,

E  = J  d3x  ( A V # 2  +  ^ 2U) =

J d 3x  ^An2B0 ±  f iV U j  T  2 n 2Ag j  d3x  B0V U  (3.4)

>  2 n 2A^ J  d3x B oV U  =  Ag\N I j  Q§s y/U, (3.5)

w here th e  last in tegral is over field space SU(2) which, as a m anifold, is ju s t th e  u n it th ree- 

sphere S3 (here, Q§3 is th e  volum e form  on S3). T he inequality  tu rn s  in to  an  equality  if th e  

B PS  equa tion

An2Bo =  ± ^ V U  (3.6)

holds.

T he stress-energy ten so r is ob ta in ed  by varying th e  B P S  ac tion  in curved space,

Sbps =  y  d4x |g |2 ^ -A 2n 4|g |-1 ga ^ B a B 13 — g 2U j , (3.7)

w .r.t. th e  m etric  [T^v =  — ( 2 / ^ /\g \)(ó /ó g ^v )S BPS], and  we can identify  th e  energy density  

and  th e  pressure by com paring  w ith  a perfect fluid,

T =  2A g p B ^ B V — ( ^ g»3Ba B 13 — g 2U^j g»v , (3.8)

P =  A2 f  ga3 B a B 3 +  p 2U , (3.9)

\2„4
p  =  - | g p  ga3 B a B 3 — g 2U . (3.10)

From  th is  definitions we can  ex tra c t th e  exact, off-shell (i.e., so lu tion-independen t) 

re la tion  for th e  B PS  Skyrm e m odel re la ting  p, p  and  th e  Skyrm e profile field £,

p =  p  +  2 ^ 2U . (3.11)

In  o rder to  use these exact expressions for a n eu tro n  s ta r  ca lcu lation , we now need an 

ansa tz  for th e  Skyrm e field (3.2) w hich leads to  a s ta tic  and  spherically  sym m etric  energy 

density  and  pressure. C oncretely, we choose th e  axially  sym m etric  (generalized hedgehog) 

ansa tz

£ =  £ (r) , n  =  (sin 9 cos N4>, sin 9 s in N4>, cos 9), (3.12)

w hich is com patib le  w ith  th e  full field equations and  th e  m etric  (2 .3) . I t leads to

B0 =  —^ £ '(r) sin2 £ ( r )s in  9, B 1 =  B2 =  B3 =  0, (3.13)
2 n 2
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(3.14)

In  principle, we could express b o th  p  and  p as functions of £ and  its derivative via (3.14) and

For our num erical ca lcu lations it is, however, m ore useful to  keep b o th  p  and  h  as

to  th e  system , w hich easily follows from  (3.14) .

One im p o rtan t difference w ith  respect to  th e  m ean-field case is th a t  th e  exact calcu lation  

w ith  th e  generalized hedgehog ansa tz  (3.12) in troduces th e  baryon  num ber N  as an  in p u t 
param eter. W h en  we solve th e  system  num erically, therefore, th e  value of th e  pressure in th e  

cen ter of th e  s ta r  is no t an  in p u t param eter. In stead , we have to  find th e  correct value of 

p 0 =  p (r  =  0) for a given baryon  num ber v ia a shooting  m ethod .

3.2 M ean-Field lim it

For th e  m ean-field lim it, we need expressions for th e  average energy density  p  and  th e  average 

baryon density  n  (in flat space, because th ey  only con tain  in form ation  ab o u t th e  nuclear 

in teractions). T h eir co nstruc tion  s ta r ts  from  th e  observation  th a t  for a perfect fluid like th e  

B PS  Skyrm e m odel in flat M inkowski space, th e  pressure (3.10) is co n stan t for all s ta tic  

solutions as a consequence of energy-m om entum  conservation,

T he equation  p  =  const. is a first in tegral of th e  s ta tic  field equations, and  p  is th e  in teg ra tion  

co n stan t. T he B PS  equa tion  (3.6) corresponds to  th e  special case p  =  0. F u rth er, it tu rn s  

ou t th a t ,  as a consequence of th e  sym m etries of th e  m odel, b o th  th e  energy and  th e  volum e 

are th e  sam e  for all solutions w ith  th e  sam e pressure and  m ay be re-expressed as ta rg e t space 

in tegrals [40]. Concretely,

(3.11) and  insert th em  in to  th e  system  of equations (2.4) - (2.7) w hich th en  closes by itself.

independen t field variables (w here we define th e  new variable h  :=  sin2(£ /2 ), for convenience) 

and  to  add  th e  new equation

(3.15)

=  d iT ij =  5i jdip  =  0 ^  p  =  —V ( B 0)2 -  p 2U  =  const. (3.16)

E  (p) =  2 n \p N E ( p ) , (3.17)

(3.18)

and

V (p) =  2 n N —V (p), (3.19)

(3.20)
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w hich p erm its  us to  define th e  average energy density  and, therefore, th e  required  m ean-field 

EoS

* p > = m  <3-2 i)
In  p articu la r, th e  average energy density  does not depend on th e  baryon num ber, as expected. 

T his im plies th a t ,  in co n tra s t to  th e  exact case, now th e  pressure in th e  cen ter is an  in p u t 

p aram eter, w hereas th e  baryon num ber is a derived quan tity . To o b ta in  it in th e  m ean- 

field case, we can  ca lcu late  th e  in tegral of th e  conserved baryon  cu rren t J N , w hich can  be 

expressed in term s of th e  p roper baryon  num ber density  n  [46],

n  =  guv u ^ J vN =  V A j °  , (3.22)

r Rs j___  r Rs  
N  =  4n V A B  J 0  r 2d r  =  4n \ [ B  n  r 2dr. (3.23)

Jo Jo
Now th e  average baryon  num ber density  can  be ob ta in ed  as th e  num ber of baryons divided

by th e  volum e th ey  occupy

n  =  V  =  - ^ - .  (3.24)
V  2nAV

We already  have th e  tools to  co n stru c t neu tro n  s ta rs  in our f  (R ) theo ry  for th e  B PS 

Skyrm e m odel, b u t we still have th e  freedom  to  choose a po ten tia l. We will perform  our 

calcu lations for th e  po ten tia ls  given below, w here we also provide th e  num erical values of 

th e  m odel p aram eters , w hich have been determ ined  by fitting  to  th e  b inding energy per 

nucleon of infinite nuclear m a tte r, E b  =  16.3 MeV, and  to  th e  nuclear sa tu ra tio n  density, 

no =  1 /V  =  0.153 fm - 3 .

•  S tep  function  po ten tia l: U  =  0 (h ) :  T his p o ten tia l is no t really  phenom enologically 

m otivated , b u t it is in teresting  because it reproduces a baro trop ic  EoS in b o th  cases, 

th en  th e  exact case coincides w ith  its  m ean-field lim it.

=  70.61 M eV /fm 3, A2 =  30.99 M eV fm 3.

•  Skyrm e po ten tia l: U  =  2h: T his is th e  usual p o ten tia l used in th e  Skyrm e m odel 

because it provides a m ass to  th e  pionic field. In  th is  case th e  exact equ a tio n  of s ta te  

is no m ore spatia lly  co n stan t so it will no t coincide w ith  its m ean-field version.

^ 2 =  88.26 M eV /fm 3, A2 =  26.88 M eV fm 3.

•  Q u ad ra tic  Skyrm e po ten tia l: U  =  4h2: T his is th e  sim plest choice for a p o ten tia l w ith  

a q u a rtic  approach  to  th e  vacuum , w hich is also a n a tu ra l choice for th e  B PS  m odel.

^ 2 =  141.22 M eV /fm 3, A2 =  15.493 M eV fm 3.

(  16h2(1 -  h )2 , h  e  [0,1/2]
•  P a rtia lly  flat po ten tia l: U  =  <

\ 1  , h  e  [1/2,1].

^ 2 =  121.08 M eV /fm 3, A2 =  23.60 M eV fm 3.
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4 N um erical resolution

For our num erical ca lcu lations, we first need to  know th e  b o u n d ary  conditions of all th e  vari

ables and  also of th e ir  derivatives, and  these conditions are ob ta in ed  analysing th e  E inste in  

equations (2.2) and  th e  system  (2.4) - (2.7) . We expand  th e  field variables close to  th e  cen ter 

( r  ~  0) in powers of r . F irs t of all, th e  sm oothness condition  a t th e  cen ter im plies th a t  th e  

odd coefficients are null. Therefore, we can  express our variables as

A =  a0 +  a i r 2 +  ...

B  =  bo +  b ir 2 +  ...

R  =  R 0 +  R i r 2 +  ...

P =  Po +  P i r 2 +  ...

P =  Po +  P i r 2 +  ...

F rom  these expressions, we d irec tly  see th a t  all th e  first derivatives cancel in th e  center. T hus 

we need th e  values of th e  variables in th e  center, b u t, as we have tw o equations th a t  are of 

second order, we also need th e  values of a i and  R i .
From  th e  (d, d) com ponent of (2.2) we im m ediately  o b ta in  bo =  1 (th is  cond ition  can, 

of course, also be found from  (2.4) - (2.7) , b u t it is no t so obvious in th is  case). T he value of 

a0 canno t be determ ined  in th is  way, because th e  system  (2.4) - (2.7) can  be re-expressed in 

te rm s of A ' /A . A, therefore, is determ ined  only up  to  a m ultip licative factor, and  ao can  take 

an  a rb itra ry  value. However, we w ant to  have th e  M inkowski spacetim e in th e  lim it r  ^  to , 

w hich is characterized  by

A ^  1, B  ^  1, R  ^  0. (4.1)

T h a t is to  say, if we find a so lution Asoi such th a t  lim r^ ^  A soi(r) =  a ^ ,  th en  th e  correctly  

norm alized solution is A (r) =  (A sol( r ) / a ^ )  and  th e  correct b o u n d ary  value a t r  =  0 is 

ao =  A(0) =  (A so i(0 )/a^ ).
In  th e  m ean-field case, th e  pressure in th e  cen ter is an  in p u t p aram eter. T his m eans 

th a t  for each (no t to o  large) value po we will find a n eu tro n  s ta r  solution. In  th e  exact case, 

on th e  o th e r hand , th e  in p u t p a ram ete r is th e  baryon num ber N , so for fixed N  th ere  is only 

one correct value for th e  pressure in th e  center, which we have to  d eterm ine w ith  a shooting 

m ethod , as follows. In  th e  exact case, we have to  solve eq. (3.15) in ad d ition  to  th e  system

(2.4) - (2.7) , and  th e  bo u n d ary  conditions for th e  Skyrm e profile h  are

h(0) =  1, h (R s) =  0, (4.2)

w here R s is th e  n eu tro n  s ta r  rad ius (i.e., th e  rad ius w here th e  Skyrm e field takes its vacuum  

value, w hich defines th e  s ta r  surface). B u t, obviously, th e  pressure m ust vanish a t th e  s ta r  

surface, as well. T he shooting m ethod , therefore, consists in solving th e  system  m any tim es
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for different values of p 0, un til one finds th e  correct value th a t  satisfies th e  condition  th a t  

d eterm ines th e  rad ius of th e  star,

p (R s) =  0. (4.3)

T he value of p0 is com pletely  determ ined  in b o th  cases (by th e  EoS in th e  m ean-field case, 

and  by eq. (3.11) in th e  exact case).

F inally, we need th e  in itia l value R 0 of th e  R icci scalar. Unlike in G eneral R elativ ity , th e  

Ricci scalar is now not determ ined  algebraically  b u t satisfies its own second-order differential 

equation  and , therefore, we do not know its in itia l value. T he way to  solve th is  problem  is, 

again, by a shooting  m ethod  w ith  th e  condition  of th e  M inkowski spacetim e a t large d istances 

(4.1) . In  order to  be able to  satisfy  th is  condition, we have to  in teg ra te  th e  system  up  to  

large d istances, in co n tra s t to  th e  G R  case w here we ju s t have to  in teg ra te  un til th e  rad ius 

of th e  star.

T he shooting to  d eterm ine R 0 required  by f  (R) g rav ita tio n a l theories has been solved 

already  for cases w hich are sim ilar to  our m ean-field case, i.e., w ith  a baro trop ic  EoS (see for 

exam ple [47, 48]). In  th e  exact case, on th e  o th er hand , we have to  solve a double shooting  

problem  for th e  pressure and th e  Ricci scalar. To solve th is  problem , we perform  several 

shootings for th e  pressure until a sufficient accuracy  is reached, th en  we change th e  value 

of th e  R icci scalar. Besides, w hen we change th e  value of th e  R icci scalar we also constra in  

th e  range of values in th e  shooting  of th e  pressure. R ep ea tin g  th is  ite ra tio n  we o b ta in  th e  

required  solutions.

T he co n stra in t in th e  pressure in each ite ra tio n  is really  im p o rtan t w hen solving th e  

system  because, as we explained, th e  solutions of th e  scalar field are  Yukawa-like, i.e., ex

ponen tia l functions. We will have b o th  th e  positive and  th e  negative (e x p (± m r))  solutions, 

and as we w ant a finite solution and th e  m ass is a real value, th e  grow ing exponen tia l m ust 

be cancelled, b u t th is  can  be ob ta ined  only w ith  a very accu ra te  in itia l condition  for R. 

A no ther in teresting  fea tu re  th a t  su p p o rts  th is  a rgum ent is found w hen we change th e  values 

of a .  W hen  a  grows we are d ev ia tin g  m ore from  G eneral R elativ ity , b u t th e  m ass of th e  field 

decreases, and we find th a t  it is easier to  reach a good accuracy  in our solutions.

Finally, as we have tw o second-order equations, we have to  s ta r t  th e  in teg ra tio n  a t a 

sm all b u t nonzero value of r  and, therefore, need th e  values of a 1 and  R i. To o b ta in  them , 

we ju s t have to  insert th e  expansions of th e  variables in th e  equations and tak e  th e  lim it 

r  =  0,

K(2po +  3po) +  ~2—  4  a R o (4.4)

R ' ' (0) =  2 R 1 =  (k (p0 -  3p0) +  R 0) .18a
(4.5)
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EXACT CASE

i f  = 2  h  1/=4  h 2 P a r t ia lly  f la t  p o te n t ia l

R(km ) R (km ) R(km)

F ig u re  1. Mass-radius curve in the exact case, for three different potentials, and for four different 
values of a . The values of a  are given in units of km2. For a given ADM mass, the star radius always 
grows with a . There is no appreciable difference in the maximum masses for different a.

5 R esu lts

We have solved th e  E inste in  equations w ith  a fo u rth  order R u n g e-K u tta  m ethod , so we can 

ex tra c t now th e  observables of th e  n eu tro n  s ta r  (the  m ass and  rad ius) from  th e  solutions. 

We find som e in teresting  differences w ith  respect to  th e  G R  case, b u t before showing th e  

figures we will explain  how to  ca lcu late  th e  m ass and  com m ent briefly ab o u t th e  stab ility  of 

th e  stars.

O nce we in teg ra te  th e  system  for a given value of th e  pressure in th e  center, we ex trac t 

th e  rad ius of th e  s ta r  as th e  po in t R s w here th e  pressure is zero. T hen  we m ain ta in  th e  

in teg ra tio n  w ith  p  =  p =  0.

In  G R , th e  m ass can  be ob ta in ed  by solving th e  differential equation

dM p k 2
=  2 r  p (r ) . (5 .1)

T his equation  is ob ta ined  by tak in g  th e  p aram etriza tio n  B (r )  =  [1 — k M ( r ) / ( 4 n r ) ] -1  and 

by using th e  field equations of G R  which im ply M (r)  =  M p(r). In  th e  region ou tside  of th e  

s ta r, th e  space-tim e is described by th e  Schwarzschild m etric  (w here R  =  0 and  M  =  const.), 

th u s  we can  identify  M s =  M (R s) w ith  th e  m ass of th e  star.
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M EAN -FIELD  CASE

F ig u re  2. Mass-radius curve in the mean-field case, for the three potentials of Fig. 1 and for the 
constant potential, for several values of a  (in units of km2). For a given ADM mass, the star radius 
always grows with a . The maximum mass grows slightly with increasing a.

However, in f  (R) gravity, we do  no t have th e  Schwarzschild solution for r  >  R s , because 

R  satisfies its  own differential equ a tio n  and , in general, is nonzero for r  >  R s , approaching  

zero only in th e  lim it of large d istances r  ^  to. As a consequence, th e  m ass function

4 n r
M  (r) =  —  (1 — B - i (r))  (5.2)

K

is no longer co n stan t ou tside th e  s ta r, and  th e  surface m ass M s =  M (R s) is different from  th e  

asym pto tic  or ADM  (= A rnow itt-D eser-M isner) m ass M ^  =  lim r^ ^  M (r)  as seen by a d is

ta n t observer. M s is also different from  M p(R s), because it receives add itional con tribu tions 

from  th e  cu rv a tu re  scalar inside th e  s ta r  rad ius (for a detailed  discussion see [49]).

A no ther im p o rtan t issue in th e  stu d y  of n eu tro n  s ta rs  is th e  s tab ility  of th e  solution. 

T he tran s itio n  from  stab ility  to  th e  u nstab le  b ranch  occurs a t th a t  value of th e  cen tra l density  

w here th e  to ta l energy (ADM  m ass) and  th e  nucleon num ber are s ta tio n a ry  [46],

d M  d N

dpo  =  0, dPo =  0,

w here po is th e  cen tra l energy density. T hen , we will find a m axim um  m ass (M max) beyond 

w hich th e  s ta rs  are no longer stable.

We show th e  curves of th e  asym pto tic  (ADM ) m ass and  th e  baryon  num ber against th e  

rad ius for b o th  th e  exact and  th e  m ean-field case in Figs. 1-5. F u rth er, in Figs. 6 and  7 

we plot th e  m ass aga inst th e  cen tra l energy density. Here, we m easure th e  m ass and  baryon
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C O M PARISO N

1/= 2h i/=  Ąh2 Partially flat potential

R{km ) R{km ) R{km)

F ig u re  3. Comparison of the mass-radius curves between the exact and the mean-field case, for the 
three potentials of Fig. 1. The exact case always leads to a slightly more compact star and does not 
reach as high maximal masses as the mean-field case.

num ber in un its of th e  solar m ass M© and solar baryon  num ber N©, w here

M© =  1.998 ■ 1030 kg , N© =  —  =  1.188 ■ 1057 (5.4)
mp

and  m p =  1.673 ■ 10-27 kg is th e  p ro to n  m ass. F u rth er, a  is always given in u n its  of km 2.

We find th a t  for s ta rs  w ith  sm all m asses  (i.e., for sufficiently sm all cen tra l pressures or, 

equivalently, cen tra l energy densities), th e  rad ius and  th e  value of th e  ADM  m ass for a fixed 

p 0 decrease w ith  increasing a  and , therefore, w ith  respect to  th e  G R  case. T he decrease in 

M adm  can  be d irec tly  seen in Figs. 6 and  7, w hereas th e  corresponding  decrease in th e  s ta r  

rad ius follows from  Figs. 1 and  2. For sm all m asses, th e  M (R )  curves in Figs. 1 and  2 are 

alm ost iden tical for different a ,  so sm aller m asses correspond to  sm aller radii. For higher 

values of th e  cen tra l pressure (corresponding to  larger m asses), th e  rad ii and  th e  m asses of 

th e  s ta rs  for fixed p 0 increase w ith  increasing a  (i.e., s tronger deviations from  G R ). Again, 

th e  increase of th e  m asses can  be d irec tly  seen in Figs. 6 and  7, w hereas th e  corresponding  

increase of th e  rad ii can  be inferred from  Figs. 1 and  2. For th e  m axim um  ADM  m asses we 

provide th e  corresponding  values also in Tables 1 and  2.

From  Figs. 1, 2 it appears as if th e  M (R ) curves for different a  approached  each o th e r for 

sm all m asses. T his is, however, no t en tire ly  correct. T he different M (R ) curves for different 

a  for a given m odel, in fact, always cross each o th er in th e  region of sm all M . In  p articu la r, 

for each a  th e re  exists a n eu tro n  s ta r  m ass M *(a) w hich has exactly  th e  sam e rad ius as its 

G R  co u n te rp art ( a  =  0). For all our m odels, however, th is occurs for very sm all m asses
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EXACT CASE

V =  2h  1 /=  4h 2 P a r t ia lly  f la t  p o te n t ia l

R{km) R{km) R{km)

F ig u re  4. Baryon number N  vs. neutron star radius R s, for the exact case. It can be seen tha t the 
N (R ) curves are very similar to the M (R) curves of Fig. 1.

(always sm aller th a n  0.15 M 0 ). As such sm all m asses are m ost likely phenom enologically 

irrelevant, we did  no t t ry  to  zoom  in to  th is region to  m ake th is  behavior m ore visible. T he 

fact th a t  th is  crossing of different M (R ) curves happens for very sm all m asses is p robably  
re la ted  to  th e  very stiff n a tu re  of our E oS  even for sm all density. B P S  Skyrm e n eu tro n  stars, 

by construc tion , do  not have a c rust region, a lthough  a c rust can  be added  w ith o u t difficulty 

[50]. O th e r  EoS, w hich are m uch softer in th e  low -density region, p roduce pronounced crust 

regions for sm all m ass n eu tro n  s ta rs  and, thus, th e  crossing happens for m uch larger m asses, 

see, e.g., [49].

A no ther in teresting  q u an tity  is th e  m ass a t th e  surface of th e  s ta r, M s, w hich in f  (R) 

grav ity  is a second, independen t and  invarian t m ass observable, as explained in [49]. I t  m ay 

be u nderstood  as a sum  of th e  m ass con tribu tions of m a tte r  and  cu rv a tu re  inside th e  star. 

As in [47], we find th a t  its value decreases w hen we dev ia te  from  G R  (i.e., for increasing 

a ) ,  see Figs. 8, 9. I t tu rn s  ou t, however, th a t  th e  non-vanishing cu rv a tu re  scalar ou tside 

th e  s ta r  produces a fu r th e r co n trib u tio n  to  th e  A D M  m ass which essentially  com pensates 

th is  decrease. T he region outside th e  s ta r, in w hich th e  Ricci scalar does no t vanish, is also 

referred to  as th e  gravisphere [47], and  it can  be seen explicitly  in Fig. 10. We only include 

th e  m ean-fields plo ts because th ey  are very sim ilar to  th e  exact case.

A n even fu rth e r m ass definition (the  ’’N ew tonian  m ass” M n [49]) is provided by th e
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2h-P o ten tia l

a  (km 2) 0 1 5 10 20

M adm  (M q ) 3.332 3.327 3.325 3.323 3.321

R  (km) 16.26 16.36 16.46 16.63 16.81

po (M eV /fm 3) 820.73 817.64 768.10 704.61 655.20

4h2-P o ten tia l

a  (km 2) 0 1 5 10 20

M adm  (M q ) 2.134 2.130 2.128 2.126 2.124

R  (km) 12.84 12.91 13.05 13.13 13.21

po (M eV /fm 3) 2188.60 2116.41 1951.95 1872.46 1807.41

P a rtia lly  flat p o ten tia l

a  (km 2) 0 1 5 10 20

M adm  (M q ) 3.270 3.268 3.266 3.264 3.262

R  (km) 15.37 15.44 15.56 15.71 15.87

po (M eV /fm 3) 603.44 605.00 557.36 516.89 482.39

T ab le  1. Exact case: values of the neutron star radii and the central energy densities for the maximum 
mass stars for the three potentials considered, for different values of a.

tim e-tim e m etric  function  A (r) ,

4 n r
M n (r) = ------ (1 — A (r)) , M n,s = M n (R s), (5.5)

K

and th is  m ass is relevant for th e  surface redshift zs [49],

kM, -1/2

Zs =  (,1 — i n i )  — 1  (5 .6)

Interestingly , it tu rn s  ou t th a t  M n,s is larger th a n  M adm  such th a t  th e  value of zs for a s ta r  

of a given m ass increases in com parison to  th e  one p red ic ted  in GR, see Figs. 11-13. T his is 

p robab ly  re la ted  to  th e  p articu la rly  stiff n a tu re  of th e  EoS of th e  B PS  Skyrm e m odel, because 

for th e  soft EoS used in [49] th ey  find th e  opposite  behavior. In  any case, th is  difference could 
be im p o rtan t to  d iscrim inate  betw een different ex tended  theories of gravity.

T he Ricci scalar curves for th e  m ean-field case shown in Fig. 10 are continuous a t th e  

n eu tro n  s ta r  rad ius for th e  m odified grav ity  a  > 0, b u t d iscontinuous for th e  G R  case. T his 

d iscon tinu ity  is a consequence of th e  EoS of th e  B PS  m odel in th e  m ean-field case because, 

in GR, th e  Ricci scalar obeys a purely  algebraic (constra in t) equation  given by th e  trace  of 

th e  E in ste in  equations,

R  =  K(3p — p). (5.7)

Therefore, if th e  EoS leads to  a non-vanishing energy density  a t th e  n eu tro n  s ta r ’s surface, 

th e  Ricci scalar will also show th a t  discontinuity . In  th e  m odified gravity, on th e  o th e r hand ,
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© -Poten tial

a  (km 2) 0 5 10 20 50 500 5000

M adm  (M 0 ) 4.218 4.219 4.221 4.227 4.275 4.402 4.447

R  (km) 17.58 17.60 17.79 17.92 18.08 18.55 18.95

po (M eV /fm 3) 430.70 374.21 360.09 345.97 338.91 317.73 289.49

2h-P o ten tia l

a  (km 2) 0 5 10 20 50 500 5000

M adm  (M c0) 3.918 3.919 3.921 3.944 3.990 4.113 4.170

R  (km) 16.56 16.70 16.82 16.93 17.09 17.50 17.69

po (M eV /fm 3) 489.46 426.80 408.83 399.83 390.82 372.75 363.70

4h2-P o ten tia l

a  (km 2) 0 5 10 20 50 500 5000

M adm  (M c0) 2.905 2.921 2.944 2.974 3.019 3.106 3.143

R  (km) 12.63 12.90 13.00 13.12 13.29 13.61 13.69

po (M eV /fm 3) 825.34 705.17 689.90 674.56 659.15 628.06 596.59

P a rtia lly  flat p o ten tia l

a  (km 2) 0 5 10 20 50 500 5000

M adm  (M c0) 3.63 3.64 3.66 3.69 3.74 3.85 3.90

R  (km) 15.627 15.77 15.88 16.07 16.31 16.72 16.89

po (M eV /fm 3) 484.492 447.23 434.77 414.78 400.98 378.337 372.02

T ab le  2. Mean-field case: values of the neutron star radii and the central energy densities for the 
maximum mass stars for the four potentials considered, for different values of a.

th e  cu rv a tu re  satisfies its own differential equation  until th e  end of th e  in tegra tion , which 

resu lts in a continuous curve.

Finally, we w ant to  com m ent on a possible singu larity  which, in terestingly, is always 

avoided by solutions of our system . Indeed, th e  first derivative of f  (R ),

M R )  =  1 -  2 a R , (5.8)

may, in principle, becom e zero for a positive R, w hich would in troduce a singu larity  in th e  

system  of equations (2.4) - (2.7) . In  GR, R  is always negative close to  th e  surface, w here 

p dom inates over p, see Eq. (5.7) . W h e th e r it m ay becom e positive in th e  cen te r of th e  

s ta r  depends on th e  EoS. I t m ay becom e positive in our case, because in th e  high-pressure 

lim it th e  EoS of th e  B PS  Skyrm e m odel approx im ates th e  m axim ally  stiff EoS p =  p  +  const. 

Indeed, it can be seen in F ig. 8 th a t  R (0) takes positive values in th e  G R  case ( a  =  0). O n th e  

o th er hand , we also see th a t  R (0) dim inishes  w ith  increasing a .  In  p articu la r, it seems th a t  

R(0) always becom es negative for sufficiently large a .  In  any case, f R(R (r))  =  1 — 2 a R (r )
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MEAN-FIELD CASE

F ig u re  5. Baryon number N  vs. neutron star radius R s, for the mean-field case.

always rem ains positive for all r  for all solutions we considered (even for ex trem ely  large a ) ,  

and  th e  singu larity  never occurs.

6 C onclusions

T he m ain  aim  of th is  p ap e r was to  s tu d y  th e  principal differences th a t  resu lt w hen coupling 

th e  B PS  Skyrm e m odel to  a f  (R) theory. Concretely, we chose th e  S tarobinsky  m odel as 

th e  sim plest possibility. S im ilar studies have a lready  been perform ed w ith  o th er EoS, w here 

always one shooting  m ethod  is involved. T he reso lu tion  of th e  B PS  m odel in th e  exact case, 

on th e  o th er hand , does im ply a shooting  m ethod  even in G R , so a double shooting  m ethod  

is required  in th e  f  (R ) case. In  general, our resu lts are com patib le  w ith  those  ob ta in ed  in 

o th er investigations [47- 49, 51- 53]. In  m ore detail, our M (R ) curves are q u ite  sim ilar to  

th e  curves resu lting  from  q u ark  s ta rs  [53], a lthough  th e  deviations for different values of a  

are slightly  larger in th e  q u ark  s ta r  case (probab ly  re la ted  to  th e  fact th a t  th e  q u ark  s ta r  

EoS for high densities is softer th a n  th e  B P S  Skyrm e EoS). T he underly ing  reason for th e ir 

sim ilarity  is th a t  in b o th  cases (quark  s ta rs  and  B PS  Skyrm e stars) th e  EoS does no t becom e 

ex trem ely  soft in th e  low -density region, such th a t  th e  M (R ) curves always have positive 

slope for sm all masses. In  o th er words, th e  rad ius grows w ith  th e  m ass, and  light s ta rs  do 

not have a pronounced ta il (or c ru st). For EoS w hich approach  th e  very soft EoS of nuclear
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EXACT CASE

V =  2h  V =  4h 2 P a r t ia lly  f la t  p o te n t ia l

Po (MeV/fm3) po (MeV/fm3) p0 (MeV/fm 3)

F ig u re  6. The ADM mass as a function of the central energy density p0, for the exact case. It can 
be clearly seen tha t for a fixed p0 the mass decreases with increasing a  for small masses, but increases 
with increasing a  for large masses.

physics for low densities, on th e  o th er hand , th e  resu lting  M (R ) curves lead to  larger radii 

for sm aller m asses (a negative slope) in th e  low -density region. For such EoS, th e  effect of 

varying a  is m uch stronger, p a rticu la rly  for sm all m ass n eu tro n  s ta rs  [47, 49]. T here  seems 

to  exist an  overall tendency  th a t  th e  varia tion  of a  has a s tronger effect for softer EoS.

It is in teresting  to  com pare th e  values of a  ( th e  p a ram ete r of th e  S tarob insky  m odel) 

used in th is  p ap er (which are sim ilar to  th e  values used, e.g., in [47, 49 , 53]) to  som e obser

vational astrophysical bounds. In  [54] a bound  a  < 1 km  was suggested, based on bounds 

on n eu tro n  s ta r  m asses. T h a t bound, however, was derived w ith in  a p e rtu rb a tiv e  approach  

to  th e  S tarob insky  m odel w hich is no t capable of reproducing  th e  gravisphere co n tribu tion  

to  th e  n eu tro n  s ta r  m ass and, therefore, u nderestim ates th is  m ass. Taking in to  account th is  

correction, th e  bound becom es m uch weaker [53]. O th er astrophysical bounds [55] are m uch 

weaker, as well, such th a t  th e  values considered in th e  present artic le  are, a t th is  m om ent, 

com patib le  w ith  those astrophysical bounds. F u rth er, we re s tric ted  to  positive values of a  

to  avoid tachyonic instab ilities. As explained in section II, in th e  case of a  < 0 we find 

solutions of th e  Ricci scalar th a t  show d am ped  oscillations ou tside  th e  s ta r. A m ore detailed  

investigation  of th is  case can  be found in [56] and  som e com m ents in [47].

For th e  neu tro n  s ta r  observables we find th a t ,  for m assive stars , th e  rad ius increases
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MEAN-FIELD CASE

F ig u re  7. The ADM mass as a function of the central energy density p0, for the mean-field case. 
It can be clearly seen tha t for a fixed p0 the mass decreases with increasing a  for small masses, but 
increases with increasing a  for large masses. The endpoints of the curves correspond to the value of 
p 0 where the GR case (a  =  0) reaches its maximum mass. This implies tha t the endpoints of the 
other curves are beyond their maxima and already belong to the unstable branch.

w ith  a ,  while th e  m axim um  m ass also slightly  increases in th e  m ean-field case, see Table 2. 

In  th e  exact case, th e  m axim um  ADM  m ass seems to  slightly  decrease w ith  increasing a , 

a lthough  th e  effect is tin y  (see Table 1). So, in principle, we could co n stra in  th e  values of a  

w ith  observational n eu tro n  s ta r  d a ta . However, such d a ta  are still no t very precise, owing to  

th e  sm allness and  th e  lack of electrom agnetic  rad ia tio n  em ission of these ob jects. Besides, 

th e  m axim um  m asses th a t  th e  n eu tro n  s ta rs  can  reach strongly  depend  on th e  EoS th a t  we 

are using, hence those  EoS th a t  do no t reach th e  m inim um  value required  by experim ental 

d a ta  ( ~  2M© [57]), b u t only fail to  do so by a sm all am ount, could be reconsidered w ith  these 

results. A priori one m ight th in k  th a t  th e  m axim um  m ass can  be a rb itra rily  large w hen th e  

value of a  is increased, b u t we find th a t  th is  is no t th e  case (e.g., for a value of a  =  5000 km 2 

we find an  increase of ab o u t 5 %). T his is also found in [52].

O ne fu rth e r in teresting  resu lt is th a t  th e  N ew tonian  surface m ass M n,s re levant for th e  

redshift of rad ia tio n  em itted  from  th e  s ta r  surface is larger th a n  th e  ADM  m ass, in co n trast 

to  resu lts for softer EoS. T his im plies th a t  if generalized grav ity  tu rn s  ou t to  be indeed 

relevant for n eu tro n  stars , th en  th e  redshift will be able to  d istingu ish  different EoS and , in
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MEAN-FIELD CASE

F ig u re  8. Mass function M (r) vs radius, for the mean-field case. For each potential, the solutions 
are for a fixed value of p 0 which is sufficiently large to  lead to a rather large mass but, at the same 
time, sufficiently small such tha t all solutions belong to  the stable branch, even for a  =  10. It can 
be seen tha t the mass at the neutron star radius, M s =  M (R s ), decreases with increasing a. On the 
other hand, the mass remains constant for r  > R s in the GR case but continues to grow for a  > 0, 
such tha t the asymptotic or ADM mass is slightly larger for larger values of a. In the GR case, we 
do not show the constant curve for r  > R s , because the integration stops there. The vertical dashed 
lines indicate the neutron star radii for different a , which turn  out to  be very similar.

p articu la r, th e ir  stiffness.

We also find th a t  th e  R icci scalar is sm ooth  a t th e  surface of th e  stars . In  th e  G R  

case, an  EoS leading to  a non-vanishing energy density  a t th e  surface of th e  s ta r  leads to  a 

d iscon tinu ity  in th e  R icci scalar, b u t in f  (R ) g rav ity  th a t  d iscon tinu ity  is cured, because R  

satisfies its own differential equation . We required  th a t  th e  Ricci scalar tends to  0 a t infinity 

to  recover an  asym pto tica lly  flat spacetim e b u t, in principle, th is  w ould no t be necessary, 

and  we could have im posed th e  Schwarzschild solutions ju s t a t th e  surface of th e  s ta r. This 

has been done in [58, 59] for som e EoS, b u t th ey  find th a t  th is  m atch ing  condition  canno t be 

im posed for an  a rb itra ry  EoS, hence th is  m atch ing  is highly u n n a tu ra l. T he resu lts shown 

in th is  p ap e r are, thus, a stra igh tfo rw ard  v io lation  of th e  Jebsen-B irkhoff theo rem  in f  (R) 

gravity.

These resu lts also co n stitu te  an  add itiona l m otiva tion  to  keep study ing  th e  B PS  Skyrm e 

m odel to  describe n eu tro n  stars . A  possible nex t s tep  consists in th e  stu d y  of th e  differences
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MEAN-FIELD CASE

F ig u re  9. The surface mass M s as a function of the star radius R s, for the mean-field case. It can 
be clearly seen tha t the surface mass for a given radius shrinks with increasing a.

of these resu lts perform ed in th e  E inste in  fram e as is done in [48], a lthough  th ey  present th e ir 

final resu lts in th e  Jo rd a n  fram e. T he Jo rd an  fram e, which is th e  one used in th is  paper, is 

th e  one in w hich G eneral R ela tiv ity  is usually  expressed, b u t th e  in tro d u c tio n  of m odified 

theories of gravity, concretely  th e  sca lar-tensor theories, m otivates th e  in tro d u ctio n  of th e  

E inste in  fram e v ia a conform al tran sfo rm atio n  of th e  m etric.

F u rth e r investigations will be focused on ro ta tin g  n eu tro n  stars , for w hich a set of 

re la tions (called th e  I-Love-Q re la tions [60]) has been found to  be independen t of th e  EoS. 

I t is an  in teresting  question  to  check th e  universality  of these re la tions also w ith  th e  B PS 

Skyrm e m odel EoS. F u rth er, universal re la tions like th e  I-Love-Q re la tion  could help to  

co n stra in  a lte rn a tiv e  theories of gravity. T he EoS of dense nuclear m a tte r  is no t com pletely  

determ ined , and  th e  observational d a ta  of n eu tro n  s ta rs  are still no t sufficient to  pin down th is  

EoS. We are, therefore, adding  even m ore uncerta in ties w hen considering m odified theories 

of gravity, and  an  E oS-independent re la tion  could help to  d iscard  som e of these m odified 

theories.
In  any case, th e  B PS  Skyrm e m odel fitted  to  infinite nuclear m a tte r  does yield ra th e r 

high values for th e  m axim um  m ass even in G R  (up to  ~  3 .5M 0 for realistic po ten tia ls), and 

generalized g rav ity  does not help in th is  respect. For a m ore com plete and  m ore reliable 

descrip tion  of nuclear m a tte r, therefore, th e  B PS  Skyrm e subm odel should be com bined w ith
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F ig u re  10. The Ricci scalar R  as a function of the radius, for the mean-field case. The solutions 
are for the same fixed values of p 0 as in Fig. 7. The Ricci scalar suddenly jumps from a (negative) 
non-zero value to zero in the GR case, but is continuous at R s for a > 0. Further, it can be observed 
that, whenever R(0) is positive, it decreases with increasing a. In the GR case, we do not show the 
constant curve for r > R s, because the integration stops there. The vertical dashed lines indicate the 
neutron star radii for different a , which turn  out to be very similar.

th e  s tan d a rd  Skyrm e m odel, which is know n to  lead to  a sm aller value of th e  m axim um  m ass 

[61, 62]. T he investigation  of th e  full generalized Skyrm e m odel and  its resu lting  neu tro n  

s ta rs  in f  (R ) grav ity  is, therefore, an  im p o rtan t nex t step  in th is  investigation . I t  is expected  
th a t  th e  B P S  Skyrm e subm odel still will provide th e  leading co n trib u tio n  in th e  cen tra l region 

of th e  sta rs , because th e  sextic te rm  is know n to  essentially  d eterm ine th e  EoS in th e  lim it 

of large density  [38]. T he resu lting  m odel will th en  p erm it even m ore d irect com parisons w ith  

observational co n stra in ts  on th e  M (R ) curves (and  o th e r observables), like th e  ones ob ta ined  

from  photospheric  rad ius expansions [63] or from  fast ro ta tin g  n eu tro n  s ta rs  (m illisecond 

pulsars) [64].

Finally, it is im p o rtan t to  m ention  a fu r th e r source of experim ental d a ta  th a t  has been 

developed du ring  th e  last years, and  w hich can  provide a lot of in form ation  ab o u t neu tro n  

s tars. T he de tec tio n  of g rav ita tio n al waves th a t  resu lted  from  th e  m erging of b inary  neu tro n  

s ta r  system s has allowed to  u n d ers tan d  th e  origin of th e  heavy elem ents of th e  periodic tab le , 

b u t also perm its  to  ex tra c t in form ation  ab o u t th e  equation  of s ta te  of nuclear m a tte r  a t high
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F ig u re  11. The Newtonian mass at the surface, Mns as a function of the star radius, for the 
mean-field case. For a fixed radius, it grows with a  for small stars but shrinks for large stars.

densities [65], by analysing th e  g rav ita tio n a l wave spec tra . T hese observations are still not 

sufficiently accu ra te  to  com pletely  d eterm ine th e  nuclear m a tte r  EoS a t high densities, b u t 

th e  grow th of observational d a ta  and  th e  im provem ent of th e  techniques to  s tu d y  th em  will 

lead to  im p o rtan t progress in th is field in th e  near fu ture .
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