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Chern-Simons action for zero-mode supporting gauge fields in three dimensions
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Recent results on zero modes of the Abelian Dirac operator in three dimensions support to some degree the
conjecture that the Chern-Simons action admits only certain quantized values for gauge fields that lead to zero
modes of the corresponding Dirac operator. Here we show that this conjecture is wrong by constructing an
explicit counterexample.
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In the last few years a considerable amount of interest
been devoted to the study of zero modes of the Abelian D
operator in three-dimensional Euclidean space, that is
square-integrable solutions of the Dirac equation

D” C[sW @ i ]W1AW ~xW !#C~xW !50 ~1!

wherexW5(x1 ,x2 ,x3), sW are the Pauli matrices, andC is a
two-component spinor. In addition, the gauge fieldAW is as-
sumed to obey certain integrability conditions~e.g., square
integrability of the related magnetic fieldBW 5]W3AW ).

On the one hand, such solutions are relevant for the qu
tum mechanical behavior of nonrelativistic electrons~see
e.g., Ref.@1#!, because solutions to the above equation are
the same time, solutions to the Pauli equation~the Pauli
equation is obtained by just squaring the Dirac operato
the above equation, i.e.,D” 2C50). On the other hand, solu
tions to the Dirac equation are also relevant for~Euclidean!
quantum electrodynamics, as was discussed, e.g., in R
@2,3#.

Some first examples of zero modes were constructe
Ref. @4#. In Ref. @5# a class of Dirac operators and their ze
modes was constructed which depend on a function tha
arbitrary up to certain boundary conditions, thereby relat
the existence of these zero modes to some topological
dition. Some further examples of zero modes were given
Ref. @6# and in Ref.@7#. In Refs.@8,9# the first examples of
Dirac operators with multiple zero modes were give
thereby demonstrating the existence of the phenomeno
zero mode degeneracy. Further, a relation between the n
ber of zero modes and a certain topological linking num
~the Hopf index! of the corresponding gauge field was esta
lished in Ref.@9#. A very detailed and more geometrical di
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cussion of these Dirac operators with multiple zero mod
based on the concept of Riemannian submersions, was g
in Ref. @10#.

In Ref. @11# the following two results were proved:~i! For
the one-parameter family of gauge potentialstAW zero modes
may exist for at most a finite set of valuest i for any t
P(t0 ,t1), and ~ii ! The set of gauge potentials withno zero
modes is a dense subset of the set of all gauge poten
~with certain decay properties!. Recently, some results on th
dimensionality of the space of gauge potential with ze
modes were obtained in Ref.@12#. There it was proven tha
locally the space of gauge potentials with~at least! one zero
mode is of co-dimension one within the space of all gau
potentials~with certain decay properties!. In addition, some
results on the dimensionalities of spaces of gauge poten
with multiple zero modes were proven.

The above-described results would suit well with the
sumption that there exists a certain functional of the ga
potential which may admit only fixed or quantized values
gauge potentials that support zero modes. The simplest f
tional one can imagine is the Chern-Simons action, wh
has the additional attractive feature of being a topologi
invariant ~i.e., independent of the metric!. Therefore, if the
existence and degeneracy of zero modes is related to s
topological features, as was speculated, e.g., in Ref.@3#, the
Chern-Simons action would be an obvious candidate.

In addition, the assumption of quantized Chern-Simo
action for gauge potentials with zero modes is further s
ported by the results of Ref.@9#, where a whole class o
gauge potentials with an arbitrary number of zero modes
constructed. For all these gauge potentials, which are c
acterized by an arbitrary function and an integerl ~the num-
ber of zero modes for a given gauge potential!, the Chern-
Simons action indeed admits only the quantized values

1

16p2E d3xAW •BW 5
1

4 S l 1
1

2D 2

~2!

where l is the number of zero modes for the given gau
©2003 The American Physical Society03-1
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potential~the Chern-Simons action for all the gauge pote
tials of Ref.@9# was calculated explicitly in Ref.@13#!.

„Remark: In Ref.@9# a fixed universal background gaug

potential was added to all the gauge potentials,AW →ÃW 5AW

1AW b, in order to relate the resulting gauge potentialsÃW to
Hopf maps. For these resulting gauge potentials the Ch

Simons action is automatically quantized, (1/16p2)*d3xÃW

•B̃W 5(1/4)(l 11)2, because the integer Hopf index is give
by the Chern-Simons action. However, even the origi
zero-mode supporting gauge potentials, without the ba
ground field, lead to the quantized Chern-Simons action~2!,
although they cannot be directly related to Hopf maps.…

Another, more general argument in favor of quantiz
Chern-Simons action for zero-mode supporting gauge fie
is related to the anomaly equation in Minkowski space,

]mJm5
1

16p2
emnabFmnFab . ~3!

Here,Jm is the current density of a chiral~left-handed! Weyl
Fermion which couples to the Abelian gauge fieldAm with
field strengthFmn . Choosing the gaugeA050 and integrat-
ing the above equation over all space and over the finite t
interval @ t i ,t f # results in the equation

Q~ t f !2Q~ t i !52
1

4p
@ I CS~ t f !2I CS~ t i !# ~4!

Q~ t ![E d3xJ0~ t,xW !, I CS~ t ![E d3x~AW •BW !~ t ,xW ! ~5!

where the left-hand side of Eq.~4! is the change in particle
number betweent i and t f @13#. If we further assume that th
change in particle number,Q(t f)2Q(t i), is two times the
number of levels~zero modes! L crossed in the~adiabatic!
change fromAW (t i ,xW ) to AW (t f ,xW )—as is usually assumed—
then the equation

2L52
1

4p
@ I CS~ t f !2I CS~ t i !# ~6!

results. Consequently,L must be independent of the pa
AW (t,xW ) which connectsAW (t i ,xW ) and AW (t f ,xW ) ~see Ref.@13#
and the literature cited there for details!. Obviously, Eq.~6!
is automatically satisfied when level crossing may occur o
for fixed, quantized values of the Chern-Simons actionI CS.
Therefore, Eq.~6! is compatible with the assumption th
zero modes only exist for certain quantized values of
Chern-Simons action. The correctness of this assump
would, in fact, be the simplest way to realize Eq.~6!.

All in all, the existing results on zero modes provide som
evidence for the assumption that the Chern-Simons actio
quantized for gauge potentials with zero modes. Therefor
further investigation of this question is of some interest. T
pologically the Chern-Simons action corresponds to a co
mology class inH3(S3;RÕZ) and this is not constrained to b
discrete. In the remainder of the paper we want to dem
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strate that the above assumption is incorrect in the gen
case by constructing a simple counterexample.

For this purpose, let us briefly review some results fro
Ref. @5#. There it was shown that the ansatz (r[uxuW )

C5g~r !expS i f ~r !
xW

r
sW D S 1

0D ~7!

for the spinor leads to a zero mode for the gauge field

Ai5h~r !
C†s iC

C†C
~8!

provided thatg(r ) andh(r ) are given in terms of the inde
pendent functionf (r ) as (8[d/dr)

g852
2

r

t2

11t2
g. ~9!

h5~11t2!21S t81
2

r
t D ~10!

where

t~r !ªtanf ~r !. ~11!

Here, a sufficient condition ont(r ) leading to smooth, non-
singular andL2 spinors and smooth, nonsingular gauge p
tentials with finite energy@*(BW )2# and finite Chern-Simons
action (*AW BW ) is

t~0!50, t~r !;c1r 1O~r 2! for r→0, ~12!

t~`!5`. ~13!

Further, the Chern–Simons action for this class of gau
fields may be expressed like

E d3xAW •BW 54p~2p24!E
0

`

dr
rth2

11t2

14p~22p18!E
0

`

dr
r 2t8h2

11t2

54pE
0

`dr

r
~r f 81sin 2f !2@~22p18!r f 8

1~p22!sin 2f # ~14!

where spherical coordinates (r ,u,w) were introduced and the
angular integrations have already been performed.

Next, let us introduce the one-parameter family of fun
tions

ta~r !5r ~a1r 2! ~15!

wherea is an arbitrary real number.ta obeys the integrability
conditions ~12! and ~13! for all values of a, thereforeta
3-2
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defines a zero-mode supporting gauge potential and a w
behaving zero mode for all values ofa. We easily compute

ta85a13r 2, ha5
3a15r 2

11r 2~a1r 2!2

and

E d3xAW •BW 516pE
0

`

drr 2@a1~52p!r 2#

3
~3a15r 2!2

@11r 2~a1r 2!2#3
. ~16!

This last integral may be easily evaluated numerically w
the help of Mathematica. Before presenting the result of
numerical integration, we want to remark that, in the lim
a→1`, ta is equal to the simplest caset(r )5r up to an
~infinite! rescaling, which does not change the value of
Chern-Simons action. Further, the simplest gauge pote
with t5r is, at the same time, the simplest gauge potentia
the class of gauge potentials constructed in Ref.@9#, with one
zero mode~i.e., l 51). The resulting Chern-Simons actio
may be evaluated with the help of Eq.~2!, and leads to

E d3xAW •BW 516p2
1

4 S 3

2D 2

59p2. ~17!

Therefore, the Chern-Simons action~16! normalized accord-
ing to (9p2)21*d3xAW •BW should approach the value one
the limit of large positivea.
08770
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In Fig. 1 we plot the Chern-Simons action~16! multiplied
by (9p2)21, as a function ofa. For a→1` it indeed ap-
proaches the value 1. Further, it increases for decreasing
ues ofa and reaches arbitrarily large values for sufficien
negative values ofa. Obviously, the Chern-Simons action i
Fig. 1 may admit all values greater than 1. This result de
onstrates that the Chern-Simons action for gauge poten
with zero modes is, in general,not quantized, which was the
purpose of this brief report.

The authors thank R. Jackiw for helpful comments. F
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FIG. 1. The appropriately normalized Chern-Simons act

(1/9p2)*A•W BW as a function of the parametera.
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