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Chern-Simons action for zero-mode supporting gauge fields in three dimensions
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Recent results on zero modes of the Abelian Dirac operator in three dimensions support to some degree the
conjecture that the Chern-Simons action admits only certain quantized values for gauge fields that lead to zero
modes of the corresponding Dirac operator. Here we show that this conjecture is wrong by constructing an
explicit counterexample.
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In the last few years a considerable amount of interest hasussion of these Dirac operators with multiple zero modes,
been devoted to the study of zero modes of the Abelian Dirabased on the concept of Riemannian submersions, was given
operator in three-dimensional Euclidean space, that is, ton Ref.[10].
square-integrable solutions of the Dirac equation In Ref.[11] the following two results were proved) For

the one-parameter family of gauge potentizﬁszero modes
may exist for at most a finite set of valugs for any t
e (tg,t1), and(ii) The set of gauge potentials witio zero
modes is a dense subset of the set of all gauge potentials
- - . . . (with certain decay propertigsRecently, some results on the
wherex=(x1,x2,x3?, o are the_ .Pau|| matrices, a[m ISa dimensionality ofytr?e space of gauge potential with zero
two-component spinor. In addition, the gauge fiélds as-  modes were obtained in RdfL2]. There it was proven that
sumed to obey certain integrability conditiofesg., square |ocally the space of gauge potentials witit least one zero
integrability of the related magnetic fieBl=9X A). mode is of co-dimension one within the space of all gauge
On the one hand, such solutions are relevant for the quarpotentials(with certain decay propertigsin addition, some
tum mechanical behavior of nonrelativistic electrofgge results on the dimensionalities of spaces of gauge potentials
e.g., Ref[1]), because solutions to the above equation are, awith multiple zero modes were proven.
the same time, solutions to the Pauli equatitime Pauli The above-described results would suit well with the as-
equation is obtained by just squaring the Dirac operator irsumption that there exists a certain functional of the gauge
the above equation, i.e}?¥ =0). On the other hand, solu- potential which may admit only fixed or quantized values for
tions to the Dirac equation are also relevant fBuclidean  gauge potentials that support zero modes. The simplest func-
guantum electrodynamics, as was discussed, e.g., in Refsonal one can imagine is the Chern-Simons action, which
[2,3]. has the additional attractive feature of being a topological
Some first examples of zero modes were constructed imvariant (i.e., independent of the metjicTherefore, if the
Ref.[4]. In Ref.[5] a class of Dirac operators and their zero existence and degeneracy of zero modes is related to some
modes was constructed which depend on a function that i®pological features, as was speculated, e.g., in RB&fthe
arbitrary up to certain boundary conditions, thereby relatingChern-Simons action would be an obvious candidate.
the existence of these zero modes to some topological con- In addition, the assumption of quantized Chern-Simons
dition. Some further examples of zero modes were given iraction for gauge potentials with zero modes is further sup-
Ref.[6] and in Ref[7]. In Refs.[8,9] the first examples of ported by the results of Ref9], where a whole class of
Dirac operators with multiple zero modes were given,gauge potentials with an arbitrary number of zero modes was
thereby demonstrating the existence of the phenomenon @bnstructed. For all these gauge potentials, which are char-
zero mode degeneracy. Further, a relation between the nuracterized by an arbitrary function and an integé&he num-
ber of zero modes and a certain topological linking numbeber of zero modes for a given gauge potentitie Chern-
(the Hopf index of the corresponding gauge field was estab-Simons action indeed admits only the quantized values
lished in Ref[9]. A very detailed and more geometrical dis-

DY =c[id+AX)]¥(x)=0 (1)

.1 1\?
J o|3xA-B=Z(|+E 2
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potential (the Chern-Simons action for all the gauge poten-strate that the above assumption is incorrect in the general
tials of Ref.[9] was calculated explicitly in Refl13]). case by constructing a simple counterexample.
(Remark: In Ref[9] a fixed universal background gauge  For this purpose, let us briefly review some results from

potential was added to all the gauge potentiéls,A=A  Ref.[5]. There it was shown that the ansatz=(x])

y
0 @

+AP, in order to relate the resulting gauge potentﬁlzto
Hopf maps. For these resulting gauge potentials the Chern- xng(r)exp(if(r)

Simons action is automatically quantized, (42§[d3xA

.§2(1/4) (I+1)?, because the integer Hopf index is given for the spinor leads to a zero mode for the gauge field
by the Chern-Simons action. However, even the original R
zero-mode supporting gauge potentials, without the back- A-:h(r)\I, o
ground field, lead to the quantized Chern-Simons adt®n ! AR
although they cannot be directly related to Hopf maps.

Another, more general argument in favor of quantizedprovided thatg(r) andh(r) are given in terms of the inde-
Chern-Simons action for zero-mode supporting gauge fieldpendent functiorf(r) as (=d/dr)
is related to the anomaly equation in Minkowski space,

)-()—>
- g
r

®

;2 1t ©
1 g=—- g.
— va, r 2
aﬂJM—l&TZ "' *PE  F .. ©) 1+t
. . . 2\—1| 47 2
Here,J,, is the current density of a chiréleft-handed Wey! h=(1+t5) 7| t'+ Tt (10
Fermion which couples to the Abelian gauge fiélg with
field strengthF ,,. Choosing the gaugd,=0 and integrat- \yhere
ing the above equation over all space and over the finite time
interval [ t; ,t;] results in the equation t(r):=tanf(r). (11

1 Here, a sufficient condition ot(r) leading to smooth, non-
Qt) —Q(t) =~ E[ICS(tf)_ICS(ti)] (4) singular and_? spinors and smooth, nonsingular gauge po-
tentials with finite energy f(B)?] and finite Chern-Simons
Q(t)zf d®xJo(t,X), Ics(t)Ef Px(A-B)(tx) (5 action (AB)is
t(0)=0, t(r)~c,r+0(r?) for r—0, (12
where the left-hand side of E€4) is the change in particle
number betweety andt; [13]. If we further assume that the t(o0) =00, (13
change in particle numbeQ(t;) —Q(t;), is two times the
number of levelszero modesL crossed in theadiabati¢ ~ Further, the Chern—Simons action for this class of gauge
change fromA(t; ,X) to A(t;,X)—as is usually assumed— fields may be expressed like
then the equation

L. = rth?
1 f d3xA-B=4w(2w—4)f dr—s
2L=— —[les(t) ~les(t)] (6) o it
41 !
. r2t/h2
results. Consequently, must be independent of the path +47T(—27T+8)f0 dr Y
A(t,x) which connectsA(t; ,x) and A(t;,x) (see Ref[13]
and the literature cited there for detail©bviously, Eq.(6) = dr
is automatically satisfied when level crossing may occur only =47rf —(rf’+sin 2)7[(—27+8)rf’
for fixed, quantized values of the Chern-Simons actigg of
Therefore, Eq.(6) is compatible with the assumption that +(m—2)sin 2f] (14)

zero modes only exist for certain quantized values of the

Chern-Simons action. The correctness of this assumptiofynere spherical coordinates, ¢, ¢) were introduced and the
would, in fact, be the simplest way to realize E&6). angular integrations have already been performed.

Allin all, the existing results on zero modes provide some  Next, let us introduce the one-parameter family of func-
evidence for the assumption that the Chern-Simons action igons

guantized for gauge potentials with zero modes. Therefore, a

further investigation of this question is of some interest. To- t,(r)=r(a+r? (15)
pologically the Chern-Simons action corresponds to a coho-

mology class irH3(S%;R/Z) and this is not constrained to be wherea is an arbitrary real numbet, obeys the integrability
discrete. In the remainder of the paper we want to demoneonditions (12) and (13) for all values ofa, thereforet,
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defines a zero-mode supporting gauge potential and a well

behaving zero mode for all values af We easily compute

3a+5r?
h,=

t'=a+3r2 = -
é 1+r2(a+r?)?

and
f d3xA- ézlawf drria+(5—m)r?]
0

(3a+5r?)?
[1+r3(a+r?)2]®

(16)

This last integral may be easily evaluated numerically with -z
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the help of Mathematica. Before presenting the result of the FIG. 1. The appropriately normalized Chern-Simons action
numerical integration, we want to remark that, in the limit (1/972) fA"B as a function of the parameter

a— +, t, is equal to the simplest casér)=r up to an

(infinite) rescaling, which does not change the value of the
Chern-Simons action. Further, the simplest gauge potenti
with t=r is, at the same time, the simplest gauge potential

the class of gauge potentials constructed in R&f.with one

zero mode(i.e., |=1). The resulting Chern-Simons action

may be evaluated with the help of E®), and leads to

3vA. R 21 3 2 2
fdxA-B:lﬁq-rZ ~| =9n2 (17)

2

Therefore, the Chern-Simons acti@tb) normalized accord-

ing to (972) "1/ d3xA- B should approach the value one in

the limit of large positivea.

In Fig. 1 we plot the Chern-Simons acti¢h6) multiplied

?y (972) 71, as a function ofa. For a— + it indeed ap-

roaches the value 1. Further, it increases for decreasing val-
ues ofa and reaches arbitrarily large values for sufficiently
negative values o&. Obviously, the Chern-Simons action in
Fig. 1 may admit all values greater than 1. This result dem-
onstrates that the Chern-Simons action for gauge potentials
with zero modes is, in generalpt quantized, which was the
purpose of this brief report.
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