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We study radial vibrations of spherically symmetric Skyrmions in the Bogomol’nyi-Prasad-Sommerfield
Skyrme model. Concretely, we numerically solve the linearized field equations for small fluctuations in a
Skyrmion background, both for linearly stable oscillations and for (unstable) resonances. This is
complemented by numerical solutions of the full nonlinear system, which confirm all the results of
the linear analysis. In all cases, the resulting fundamental excitation provides a rather accurate value for the
Roper resonance, supporting the hypothesis that the Bogomol’nyi-Prasad-Sommerfield Skyrme model
already gives a reasonable approximate description of this resonance. Furthermore, for many potentials
additional higher resonances appear, again in agreement with known experimental results.
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I. INTRODUCTION

The Skyrme model [1] is a nonlinear field theory of scalar
(pion) fields that is considered a good candidate for the low-
energy effective field theory (EFT) of QCD [2] and, as such,
should provide a realistic description of the physical proper-
ties of nucleons, atomic nuclei, and nuclear matter. In a first
approximation, nucleons and nuclei are described by topo-
logical soliton solutions that the model supports (Skyrmions)
[1,3]. This description may be further improved by the
quantization of certain symmetry modes (most importantly,
spin and isospin [4–7], which are good quantum numbers of
nuclei), or by the inclusion of Coulomb energy contribu-
tions. The Skyrme model is very successful on a qualitative
level, because it incorporates in a natural way many non-
trivial properties of nuclei [e.g., baryon number conserva-
tion, nuclear binding, rotational bands (excitation spectra),
etc.], as should be expected for a unified EFT description.
Quantitatively, the original version of the model as

introduced by Skyrme typically leads to a precision of
about 30% when applied to nucleons and light nuclei
(although there are situations where a much better precision
may be achieved; see, e.g., [8]). When a description of both
light and heavy nuclei is attempted, the original Skyrme
model faces the problem that the predicted nuclear binding
energies are too high. This last problem, however, may be
easily remedied by considering a more general class of
models that contain the original proposal as a submodel.
Under some mild assumptions (Poincare invariance and the
existence of a standard Hamiltonian), the most general
Skyrme model is [here U is the SU(2)-valued Skyrme field,
and the λi are dimensionful coupling constants]

L ¼ L0 þ L2 þ L4 þ L6 ð1:1Þ

where

L2 ¼ −λ2TrðLμLμÞ;
L4 ¼ λ4Trð½Lμ; Lν�2Þ;
Lμ ≡U†∂μU ð1:2Þ

are the kinetic (sigma model) and Skyrme terms, constitut-
ing the original Skyrme model. Further,L0 ¼ −λ0UðUÞ is a
potential (nonderivative) term, where in this paper we
exclusively consider potentials that only depend on the
trace of the Skyrme field Tr U, thereby breaking the full
chiral symmetry SUð2ÞL × SUð2ÞR down to the isospin
symmetry SUð2Þdiag. Finally, the sextic term [9–13]

L6 ¼ −λ6BμBμ ð1:3Þ

is just the square of the baryon current (here, B is the
baryon number)

Bμ ¼ 1

24π2
ϵμνρσTrLνLρLσ; B≡

Z
d3xB0: ð1:4Þ

Both the original Skyrme model LSk ¼ L2 þ L4 and the
massive Skyrme model LmSk ¼ LSk − λ0Uπ [where the
pion mass potential Uπ ¼ ð1=2Þð1 − TrUÞ is added] share
the problem of the too high binding energies. One simple
way to ameliorate this problem is to add further terms to the
potential like, e.g., higher powers of the pion mass potential
[14,15], L0 ¼

P
aλ0;aU

a
π . These higher powers introduce

a short-range repulsion between individual nucleons (i.e.,
B ¼ 1 Skyrmions), thereby reducing the overall binding
energies.
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The second way to cure the binding energy problem
consists in including both a potential and the sextic term L6

into the model and in choosing values for their coupling
constants such that they provide significant contributions to
the total Skyrmion (nuclear) masses. This possibility is
related to the fact that the submodel

LBPS ≡ L6 þ L0 ≡ −λ6BμBμ − λ0U ð1:5Þ

(the so-called Bogomol’nyi-Prasad-Sommerfield (BPS)
Skyrme model [16,17]) has the BPS property, that is, an
energy bound linear in the baryon number, E ≥ CU jBj (here
CU is a constant that depends on the potential), and
Skyrmion solutions saturating the bound for arbitrary B.
Classical binding energies are, therefore, 0, and small
nonzero binding energies may be generated, either already
for the BPS submodel, by including further energy con-
tributions (spin and isospin excitations, Coulomb energy
[18]), or by adding more terms to the Lagrangian [19–21],
leading to the general Lagrangian (1.1). There exist some
further proposals to solve the binding energy problem,
which require, however, going beyond the field content of
the Skyrme model (e.g., by including vector mesons
[22,23]) with the ensuing complications this implies.
In addition to the spin and isospin excitations, there exist

further collective degrees of freedom (d.o.f.) like, e.g.,
vibrational modes (which are, in general, not related to
symmetries, i.e., they are not moduli), whose excitations
are relevant for the description of the spectra of nuclei and
other physical properties of nuclear matter. The identifi-
cation of the correct vibrational modes of a given Skyrmion
solution is, in general, a difficult problem (for a recent
calculation see, e.g., [24]), but for Skyrmions with spheri-
cally symmetric baryon and energy densities there exists
the much simpler possibility of purely radial vibrations
(monopole excitations). In the B ¼ 1 sector, radial vibra-
tions are related to the so-called Roper resonance [25–33],
whereas for higher B radial vibrations may be relevant for
the description of the giant monopole resonance (a spheri-
cally symmetric collective vibration that is found for many
heavier nuclei) or for the determination of the compression
modulus of nuclear matter.
Within the Skyrme model context, a Skyrmion may be

expanded into purely radially symmetric vibration modes
only for Skyrmions with a spherically symmetric energy
density. For the standard Skyrme model [and for general-
izations (1.1) with all four terms present] this means that
such a mode expansion is possible only for the B ¼ 1
Skyrmion, because only this Skyrmion is radially sym-
metric. For nonspherical higher B Skyrmions, radial modes
may either be described in an approximation [e.g., by
collective modes, like the uniform rescaling (Derrick
mode), or by approximating a crystal-type large B
Skyrmion by a lattice of point nucleons or other substruc-
tures and by identifying the vibration modes of this lattice]

or by a description that goes beyond the excitation of a
single Skyrmion (e.g., by averaging over differently ori-
ented nonspherical Skyrmions corresponding to the same
nucleus). The BPS submodel (1.5), on the other hand,
allows for an axially symmetric ansatz leading to
Skyrmions with a radially symmetric energy density for
arbitrary baryon number B, so radial excitation modes may
be studied for any B in this case.
In this paper, we study the radial vibrational excitations

in the BPS Skyrme model for arbitrary B (a detailed
investigation of the radial vibrations of B ¼ 1 Skyrmions
in generalized Skyrme models and its application to the
Roper resonance will be published in a forthcoming paper).
Radial excitations may be studied using various methods
with different levels of precision and rigor [34–39]. The
simplest description assumes that the excitation may be
described by a uniform rescaling (Derrick scaling) of
the field variables, Uðt; ~xÞ ¼ U0ð~x=ρðtÞÞ, where U0 is
the static Skyrmion solution. Inserting this rescaled field
into the action and expanding up to second order in the
small fluctuation q≡ ρ − 1 leads to the harmonic oscillator
action for the variable q, and to the corresponding harmonic
oscillator frequency. The variable q may then be promoted
to a quantum mechanical variable, leading to the quantum
harmonic oscillator. This corresponds to a truncated quan-
tization of the field U, where infinitely many d.o.f. of the
field are approximated by the finite d.o.f. of certain
collective modes. In the concrete case just described, there
is only one mode (the Derrick mode ρ), but some further
collective modes like, e.g., collective (rigid) rotations of the
Skyrmion or nonradial vibrational modes may, in principle,
be included in this truncated quantization. The uniform
rescaling is, in general, not a true vibrational eigenmode of
the Skyrmion, but at most an approximation, whose
accuracy should be checked by comparison with more
precise results. It is, however, implicitly or explicitly used
in many descriptions of nuclear matter, in particular, in
macroscopic descriptions where nuclear matter is modeled
as a (perfect or viscous) fluid.
The true linear eigenmodes (eigenmodes for small

fluctuations) of a Skyrmion are calculated by inserting
the small perturbation U ¼ U0ð~xÞ þ δUðt; ~xÞ into the
action and by expanding up to second order in δU (the
simplified expressions for U0 and for δU implied by
spherical symmetry are given in Sec. III). This procedure
leads to a linear, Schrödinger-type equation for δU in an
effective potentialQðrÞ, whose eigenstates and eigenvalues
provide the true linear excitations and their frequencies.
Depending on the value of a certain mass threshold in
the theory [which is related to the value of the effective
potential QðrÞ at infinity], there may exist zero, finitely
many, or infinitely many eigenmodes. Here, the condition
for the existence of an eigenmode is always that its
eigenfrequency must lie below the mass threshold. These
eigenmodes are of physical relevance both in a classical and
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in a quantum context. Classically, they describe the vibra-
tional eigenmodes of the Skyrmion (nucleon or nucleus).
Within semiclassical quantization, each eigenmode is
quantized as an independent harmonic oscillator. Each
mode δUi, therefore, contributes a term ð1=2Þℏωi to the
mass of the quantized Skyrmion (here, the scattering states
also contribute, so the mass of the quantum Skyrmion must
be renormalized in all cases). Furthermore, the excitation
energies of excited states (nucleus-meson bound states) are
given by ℏniωi (where neither ni nor ωi should be too
large for the semiclassical approximation to be valid).
Concretely, the lowest excitation energy is ℏω1.
Eigenmodes below the mass threshold are linearly stable.

Nonlinearities in the theory, on the other hand, effectively
couple several eigenmodes leading to a total frequencyP

iniωi above the mass threshold, which allows energy to
be radiated away. This requires, however, the presence of
sufficient energy to begin with, or a subsequent injection of
additional energy into the system (e.g., via energy non-
conserving boundary conditions). In the quantum theory,
the linearly stable eigenmodes correspond to stable bound
states. Again, these stable bound states may be broken up
into their constituents if enough energy is pumped into the
system.
Certain frequencies above the mass threshold, some-

times, provide strongly enhanced contributions to the time
evolution of a weakly perturbed Skyrmion. In the linearized
analysis, these frequencies correspond to resonances or
quasinormal modes, that is, to solutions for the linear
fluctuation equations for complex frequencies. The corre-
sponding eigenmodes, therefore, have an exponentially
decaying instead of a time-independent norm. Physically,
they correspond to exponentially damped vibrations in a
classical context or to unstable bound states (resonances) in
a quantum description. [We remark that resonance modes
within the BPS Skyrme model for a certain class of
potentials have been studied numerically in [40].]
Finally, the full nonlinear time evolution may be inves-

tigated for the classical field theory. When taking a weakly
perturbed Skyrmion as the initial condition, it is expected
that the frequencies of the normal and/or quasinormal
modes dominate the time evolution at least for not too
large evolution times. In the large time limit, on the other
hand, the leading behavior of a solution may be completely
different and is determined by the asymptotic properties
of the full nonlinear system. A corresponding quantum
description of the full nonlinear field theory (beyond the
semiclassical quantization approximation) is much more
difficult to find (or even to define), as the underlying model
is perturbatively nonrenormalizable.
Our paper is organized as follows. In Sec. II, we consider

some scalar field theories in 1þ 1 dimensions as simple
toy models where all the features mentioned in the
preceding paragraphs may be investigated in a simpler
setting. Concretely, we consider both the uniform scaling

approximation and the full linear fluctuation analysis
(normal and quasinormal modes) and study the accuracy
and adequacy of the former. Further, we calculate the full
nonlinear time evolution numerically. In Sec. III we do the
same analysis for the BPS Skyrme model. First, we
consider a particular limiting potential where both the
scaling solution and the linear fluctuation analysis may be
done analytically. Then we introduce a more general class
of potentials where some steps have to be done numerically.
We also numerically calculate the full nonlinear time
evolution and compare with the results of the linearized
analysis. Section IV contains our conclusions, where also
physical implications of our results are discussed. Some
more technical discussions are relegated to three
appendixes.

II. (1þ 1)-DIMENSIONAL EXAMPLES

A. The collective mode approximation

As a first step, we compare the accuracy of the Derrick
(uniform rescaling) collective mode with the known true
oscillational modes of some simple theories, concretely the
ϕ4 and sine-Gordon (sG) models. The following analysis
can, in principle, be extended to other solitons, but it is
difficult to obtain it in a general form. The Lagrangian in
1þ 1 dimensions has the form

L ¼
Z

dx

�
1

2
ϕ2
t −

1

2
ϕ2
x −UðϕÞ

�
; ð2:1Þ

where ϕ is a real scalar field and U is a potential. For the
collective mode approximation, we insert the ansatz
ϕðx; tÞ ¼ Φðx=ρðtÞÞ into the Lagrangian, where ΦðxÞ is
a static solution to the evolution equation (i.e., a soliton).
After changing the variables y ¼ x=ρ we obtain

L ¼
Z

ρdy

�
y2Φ2

y

2ρ2
_ρ2 −

Φ2
y

2ρ2
−UðΦÞ

�
; ð2:2Þ

and after integration

L ¼ _ρ2

2ρ
A −

M
2

�
1

ρ
þ ρ

�
ð2:3Þ

where

A ¼
Z

dyy2Φ2
y ð2:4Þ

and

M ¼
Z

dyΦ2
y ¼ 2

Z
dyUðΦðyÞÞ ð2:5Þ

is usually referred to as the mass of the soliton.
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Assuming a small perturbation around the static solution
ρ ¼ 1þ q with jqj ≪ 1 we obtain the Lagrangian for the
harmonic oscillator

L ¼ −M þ A _q2

2
−
Mq2

2
ð2:6Þ

with the frequency

ω2 ¼ M=A: ð2:7Þ

1. ϕ4 example

In the ϕ4 case

UðϕÞ ¼ 1

2
ðϕ2 − 1Þ2; ΦðxÞ ¼ tanh x ð2:8Þ

there exists a single oscillational mode

ηdðxÞ ¼
ffiffiffi
3

2

r
tanh x
cosh x

; ω2
d ¼ 3: ð2:9Þ

The mass threshold in this model is m2 ¼ 4. The integrals
give A ¼ π2−6

9
and M ¼ 4

3
. The collective excitation fre-

quency is ω2
c ¼ 12

π2−6 ≈ 3.101, which is pretty close to the
accurate value of 3. Moreover, the profile of the assumed
mode,

~ηcolðxÞ ¼ −
d
dq

tanh

�
x

1þ q

�����
q¼0

¼ x
cosh2x

ð2:10Þ

or, after normalization,

ηcolðxÞ ¼
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 − 6
p x

cosh2x
; ð2:11Þ

is also not very different from the true oscillational mode;
see Fig. 1. The collective mode can be decomposed as

ηcolðxÞ ¼ ðηcol; ηdÞηdðxÞ þ
Z

∞

−∞
dkðηcol; ηkÞηkðxÞ ð2:12Þ

where

ðηcol; ηdÞ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

8ðπ2 − 6Þ

s
¼ 0.977985 ð2:13Þ

is the projection of the collective mode on the discrete
oscillational mode. Note that the collective mode consists
of the oscillational mode to 98%.

ηkðxÞ ¼
3 tanh2 x − 3ik tanh x − 1 − k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2 þ 1Þðk2 þ 4Þ
p eikx ð2:14Þ

are scattering modes for wave number k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4

p
, and

the projection of the collective mode onto the scattering
modes can be expressed as

ðηcol; ηkÞ ¼
3ik2

4 sinhðkπ
2
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ2 − 6Þðk2 þ 1Þðk2 þ 4Þ

p : ð2:15Þ

The linearized evolution of the excited collective mode
ϕðx; 0Þ ¼ ΦðxÞ þ AηcolðxÞ;ϕtðx; 0Þ ¼ 0 can be obtained
from

ϕðx; tÞ ¼ ΦðxÞ þ Aðηcol; ηdÞηdðxÞ cosðωdtÞ

þ A
Z

∞

−∞
dkðηcol; ηkÞηkðxÞ cosðωktÞ þOðA2Þ:

ð2:16Þ

The scattering modes describe waves moving away from
the soliton. After a long time only the oscillational mode
remains. This mode however also decays via nonlinear
coupling to scattering modes.

2. Sine-Gordon example

In the sG case

UðϕÞ ¼ 1 − cos2ϕ; ΦðxÞ ¼ 4tan−1ðexpðxÞÞ ð2:17Þ

there is no oscillational mode. The mass threshold in this
model is m2 ¼ 1. The integrals give A ¼ 2π2

3
and M ¼ 8.

The collective excitation frequency is ω2
c ¼ 12

π2
≈ 1.21585,

which is above the mass threshold. The collective excita-
tion mode

ηcolðxÞ ¼
ffiffiffi
6

p

π

x
coshðxÞ ð2:18Þ
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FIG. 1. Normalized modes (true oscillational and collective) for
the ϕ4 model.
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can be decomposed in the eigenmodes of the sG spectrum,

ηkðxÞ ¼
ik − tanh xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p eikx; k2 ¼ ω2 − 1; ð2:19Þ

as

ηcolðxÞ ¼ −
1

2π

Z
∞

−∞
dk

ffiffiffi
6

p
ηkðxÞ

coshðkπ
2
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p : ð2:20Þ

Note that in the sine-Gordon model there is no natural
candidate that would take over the evolution of the excited
collective mode. Therefore, we can conclude that such a
collective mode does not exist. The evolution is determined
by scattering modes radiating away the energy. The long
time evolution is dominated by modes with k → 0 (or
ω → 1) that propagate very slowly and take a long time to
be radiated out. We discuss this problem in more detail in
the following section.
From the above analysis it is clear that the collective

excitation approach can be misleading. Sometimes it works
quite well as in the ϕ4 model, where the profile of the
collective mode is very similar to the true oscillational
mode. However, it can also fail completely, as in the sine-
Gordon model, where the collective approach gave some
profile and frequency that does not reproduce any feature of
the full evolution of the system.

B. The double sine-Gordon model

The two models of the last subsection are rather special
and, thus, do not allow us to study the full range of
phenomena entailed by nonlinear field theories, in general.
Let us, therefore, consider the double sine-Gordon model

L ¼ 1

2
ϕt −

1

2
ϕ2
x − 1þ cosðϕÞ þ ϵ cosð2ϕÞ ð2:21Þ

with Euler-Lagrange (EL) equation

ϕtt − ϕxx þ sinðϕÞ þ 2ϵ sinð2ϕÞ ¼ 0 ð2:22Þ

as an example of a more general model. The static solution
can be written as

ϕ0ðxÞ ¼ π þ 2tan−1
�
sinh ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ϵ
p

xÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ

p
	
: ð2:23Þ

Small perturbations around the static solution have
mass m2 ¼ U00ðϕvacÞ ¼ 1þ 4ϵ. For ϵ ¼ 0, the model is
just the sine-Gordon model. For ϵ ¼ −1=4 the model
becomes massless. One internal, oscillational mode exists
for ϵ > 0.
One of the techniques to study the evolution of small

perturbations around the static solution is the linear approxi-
mation. We express the field as ϕ ¼ ϕ0ðxÞ þ ξðx; tÞ. Next,

we expand the Euler-Lagrange equation assuming that ξ is
small, and keep only terms proportional to the first power
of ξ. The resulting field equation usually has the form of a
Schrödinger equation, and the solution can be decomposed
in terms of the modes ξðx; tÞ ¼ eiωtηkðxÞ, where k ¼ kðωÞ
is a wave number. The linear Schrödinger equation can have
a discrete or continuous spectrum or both. The existence of
discrete modes plays a very important role for the late time
evolution.

1. Oscillational mode

Usually, the perturbation in the continuous spectrum is
radiated out and the discrete mode remains. After squeez-
ing the soliton, the vibrational or oscillational mode is
being excited. This mode remains for quite a long time. In
fact, in the linearized approximation the discrete mode
remains excited forever and oscillates with constant ampli-
tude and frequency. However, including higher nonlinear
terms shows that this mode usually couples to scattering
modes and loses its energy via radiation through higher
harmonics. If the oscillational mode is not very much below
the mass threshold, i.e., ωd > m=2, already the 2ωd mode
carries away energy. As Manton et al. [38] showed, this
leads to the decay of the mode,

dE
dt

∼ −A4 ⇒
dA
dt

∼ −A3 ⇒ A ∼ t−1=2: ð2:24Þ

An example of this process is depicted in Fig. 2(a) [in this
and the following figures, Fourier transforms are always
calculated via a fast Fourier transform (FFT) algorithm].
For ϵ ¼ 0.2 there exists a single oscillational mode with
the frequency ω ¼ 1.2681. In the spectrum, one can see the
second harmonics that carries away the energy from the
perturbation. Because of the small amplitude, this process
is very slow, and only a very small change of the amplitude
can be noticed during the simulation.

2. Mass threshold

If there are no oscillational modes in the spectrum,
another possibility arises. The field can be expressed in
term of the eigenmodes,

ξðx; tÞ ¼
Z

∞

−∞
dkcðkÞeiωðkÞtηkðxÞ þ c:c:; ð2:25Þ

where the cðkÞ represent the mode excitations. If the
potential tends to a constant m2 at infinity, the wave number
obeys the standard dispersion relation k2 ¼ ω2 −m2. The
waves with high frequency move faster, and the waves close
to the threshold move slowly. After a long time we can
expect that only the waves near the mass threshold remain.
Expanding the frequency around k ¼ 0, the solution can be
expressed in the form
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ξðx; tÞ ≈ eimt

Z
∞

−∞
dkcðkÞeik2t

2m ηkðxÞ þ c:c: ð2:26Þ

The exponent, in the limit of large times, tends toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mπi=t

p
δðkÞ, and the long time behavior of the solution

can be found as

ξðx; tÞ ∼ cos ðmtþ π=4Þffiffi
t

p : ð2:27Þ

Note that the leading term has the same behavior as in the
previous case t−1=2; however its origin is completely differ-
ent. The previous decay was nonlinear, and here the whole
analysis used the linear approximation. In the previous case,

(a)

(b)

(c)

(d)

(e)

FIG. 2. Relaxation of the field for squeezed soliton initial conditions and their spectra for different values of the parameter ϵ. The solid
lines in the right panels represent the Fourier transform for t ∈ ½100; 1800�; the dashed lines include earlier times t ∈ ½0; 1800�. The gray
areas represent the nonpropagating region below the mass threshold. (a) ϵ ¼ 0.2 oscillational mode excited, almost constant amplitude,
small radiation via second harmonics; (b) ϵ ¼ 0 pure sG case, slow modes on the threshold ω ¼ 1 dominate long time evolution;
(c) ϵ ¼ −0.1, fast decay of the resonance mode and remaining tail at the mass threshold; (d) similar to (c) but with longer decay of the
resonance and a clearly seen difference in frequency; (e) ϵ ¼ −0.25 massless case with decaying resonance and polynomial tail
described by Bizon [39].
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the evolution was described by a single mode. Here, we
actually have no single mode but rather a combination of
many modes with no well-defined shape. This process
dominates Figs. 2(b)–2(d).
The above analysis is not valid whenm → 0. In this case,

the explicit form of ηkðxÞ as k → 0 is needed.

3. Resonance mode

The other conjecture that was used was that cðkÞ had no
poles in the complex plane. This assumption does not hold
when there are resonance modes in the spectrum. In this
case, after integration, other frequencies remain in the long
time evolution of the system. The poles are in the complex
plane, so the imaginary part is responsible for the damping.
The quasinormal modes behave like

ξðx; tÞ ∼ e−Γt cosðωtÞ: ð2:28Þ

Usually, the resonance mode with the smallest damping Γ
remains for the longest time. The presence of this mode can
be seen in Figs. 2(c)–2(e). In the first two cases, the mode
decays faster than the threshold modes, and the previously
described mechanism dominates the long time evolution.
In the last case, the field is massless. The Schrödinger
potential has an especially simple form,

Vϵ¼−1=4ðxÞ ¼
6x2 − 2

ð1þ x2Þ2 : ð2:29Þ

This potential has a resonance mode with the frequency
ω ¼ 1.2664þ 0.4441i, which well fits the behavior of the
full nonlinear case.
In this model, we can see only a single quasinormal

mode. However, it is possible to have an infinite number
of such modes. In [35], Forgacs et al. show for BPS
monopoles how a small perturbation evolves when there is
an infinite number of resonance modes on a finite fre-
quency range.
Note that there is no resonance mode in the case of the

pure sine-Gordon or ϕ4 model.

4. Nonlinear behavior

For massive fields, another possibility can occur.
Sometimes, even a low amplitude perturbation can have
nonlinear properties. For example, the ϕ4 model exhibits
oscillons that can last for a very long time. They are
nonintegrable counterparts of breathers in the sine-Gordon
equation. Their basic frequency is below the mass thresh-
old, implying that there can be no propagation at this
frequency. Usually, the oscillons radiate via higher har-
monics, but the radiation is extremely small. When they
radiate they lose energy, which leads to a decrease of the
amplitude and an increase of the frequency. In higher
dimensions, there exist some critical frequency above
which the oscillon disappears very quickly. In 1þ 1

dimensions there is no such frequency, and the oscillon
slowly evolves with its frequency tending to the mass
threshold from below.
In the case of the pure sine-Gordon model, it is possible

to find an exact analytic form of a breather with a soliton in
the center. Such three-soliton solutions are well known.
However, in the case when ϵ ≠ 0 such periodic solutions do
not exist. They may appear as weakly unstable bound states
of three solitons. We can prepare such a solution

ϕðx; t ¼ 0Þ ¼ ϕ0ðxÞ þ ϕ0ðx − aÞ þ ϕ0ðxþ aÞ − 2π

ð2:30Þ

and see how this configuration evolves. For ϵ ¼ 0, the
situation is more or less clear. The configuration is not a
pure three-soliton state, so some additional energy can be
radiated out, but a nearly periodic solution eventually
develops from these initial data. One of the manifestations
of the nonlinear origin of this configuration is a quite
complicated spectrum with the basic frequency below the
mass threshold and visible higher harmonics; see Fig. 3.
Note that in the sine-Gordon model there are no oscilla-
tional modes, so any odd perturbation can be expressed as a
linear combination of scattering modes with ω > 1. The
persistence of such a configuration is guaranteed by the
complete integrability of the sine-Gordon model. However,
even a small jϵj ¼ 0.01 spoils the integrability, and the
evolution is governed by one of the previously described
scenarios for the generic case. This may appear strange,
because even for models that are clearly nonintegrable
(ϕ4 or ϕ6) oscillons exist. However, oscillons are two-
soliton states and the configuration described by (2.30) is a
three-soliton state.
For massless fields (m ¼ 0), another possibility is a

nonlinear polynomial tail, as was pointed out by
Bizon [39].
For generic initial conditions, the long time behavior

of the field is determined by the existence of oscillational
modes, a mass threshold, and resonances (quasinormal
modes). The most persistent states from the linear approxi-
mation are the oscillational modes. Resonance modes
decay exponentially fast, so their presence can be seen
when either the oscillational modes or the slow modes on
the threshold are not excited, or when there exist no
oscillational modes, or for massless fields. Sometimes,
the initial conditions can give rise to some long-living
nonlinear structures, like oscillons or polynomial tails. The
above analysis is quite general, and squeezing the soliton is
just one of the ways to perturb it. The numerical values of
the excitations of the long-living modes depend on the way
the soliton was excited, but the leading behavior after a
long time is rather universal.
However, we cannot see any reason why the squeezing

of the soliton would generate some well-defined frequency.
We think that the model defines some time scale (such as
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mass of the scalar field or oscillational modes) that more
or less agrees with the time scale defined by the Derrick
collective mode.
Finally, also for the double sine-Gordon model we may

find the frequency obtained from the collective mode
approximation and compare it with the frequencies domi-
nating the long time evolution of the perturbation around
the soliton; see Fig. 4. For ϵ > 0, there exists an oscilla-
tional mode that dominates the long time behavior. For
−1=4 < ϵ < 0 the most dominating frequency is the
frequency of the mass threshold. For the massless case
ϵ ¼ −1=4, the resonance mode dominates. From the figure
we can see that the collective mode provides a reasonable
approximation only in the vicinity of ϵ ¼ 0.3. However,
this is probably just a coincidence.

III. THE BPS SKYRME MODEL

The Lagrangian of the BPS Skyrme model in standard
form is [16]

LBPS ¼ −λ2π4BμBμ − μ2U; ð3:1Þ

but here we prefer to introduce coupling constants with
units of mass m and length l,

λ2 ¼ ml3; μ2 ¼ ml−3: ð3:2Þ

The Skyrme field parametrization is

U ¼ expðiξ~τ · ~nÞ ¼ cos ξ1þ i sin ξ~τ · ~n; ð3:3Þ

where ξ is a real field, ~τ are the Pauli matrices, and

~n ¼ ðsinΘ cosΦ; sinΘ sinΦ; cosΘÞ ð3:4Þ

is a three-component unit vector. Our metric convention is
ðþ;−;−;−Þ. Furthermore, the potential UðξÞ is a function
of the profile function ξ only, where in the following we
consider only potentials that have their unique vacuum at
ξ ¼ 0 (i.e., at U ¼ 1).
We emphasize that the BPS submodel (1.5) is just a

certain limit of the generalized model (1.1), where only
the latter should be considered a genuine low-energy EFT
of strong interaction physics (e.g., the term L2 is

(a)

(b)

(c)

FIG. 3. Relaxation of the field for wobbler initial data for sine-Gordon (2.30) for three different initial separations [(a) a ¼ 2;
(b) a ¼ 3; (c) a ¼ 5]. The nonlinear nature of these objects, with basic frequency below the mass threshold and many higher harmonics,
is clearly seen.
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indispensable to pion propagation). The coupling constants
in the full model (1.1), however, should probably be such
that L6 and L0 give the main contributions to the static
Skyrmion energies (the nuclear masses)—a “near-BPS
Skyrme model.” This explains why certain (in particular,
static) properties of the full near-BPS Skyrme model may
be studied in the BPS submodel (which frequently allows
for an analytical treatment), at least approximately.
Mathematically, the fact that the BPS submodel should
be considered only as a limit is reflected in its lack of a
well-defined Cauchy problem. The sextic term L6 is the
square of the baryon current, so, loosely speaking, the time
evolution in a region on a given time slice might face
problems whenever certain components of the baryon
current are 0 in that region. The baryon current is an
antisymmetric product of gradients of the three Skyrme
fields, so it is 0 whenever these gradients are linearly
dependent. This problem is immaterial for static configu-
rations, and static BPS Skyrmions may be calculated easily

by solving the BPS equation. We find that, within the
assumptions we use, the time evolution (for sufficiently
small time intervals) of small radially symmetric perturba-
tions about axially symmetric BPS Skyrmions is well
defined, as well, and not affected by that problem.
Concretely, for static configurations we use the axially

symmetric ansatz for general baryon number B,

ξ ¼ ξðrÞ; Θ ¼ θ; Φ ¼ Bϕ; ð3:5Þ

which leads to a spherically symmetric energy density
and baryon density. The three Skyrme field gradients are
obviously linearly independent, so the baryon density is 0
only if the Skyrme field takes its vacuum value ξ ¼ 0.

A. Small perturbation
approximation—oscillating modes

We want to consider radial (monopole) excitations;
therefore we use the ansatz ξ ¼ ξðr; tÞ;Θ ¼ θ, Φ ¼ Bϕ
for the time-dependent Skyrme field. This ansatz is
compatible with the full four-dimensional Euler-
Lagrange equations and leads to the reduced action [40]

S ¼ 4πm
Z

dtdr

�
B2l3

4r2
sin4 ξð_ξ2 − ξ02Þ − r2l−3U

�
: ð3:6Þ

The EL equation for ξ is

B2l6

2r2
sin4 ξð ̈ξ − ξ00Þ þ B2l6

r2
sin3 ξ cos ξð_ξ2 − ξ02Þ

þ B2l6

r3
sin4 ξξ0 þ r2U ;ξ ¼ 0: ð3:7Þ

Now we insert ξ ¼ ξ0ðrÞ þ η̄ðt; rÞ, where ξ0ðrÞ is the static
BPS solution and η̄ðt; rÞ is the fluctuation field, and expand
up to first order in η̄ to get the following linear equation
for η̄:

1

2
sin4ξ0ð ̈η̄ − η̄00Þ þ

�
−2sin3ξ0 cos ξ0ξ00 þ

1

r
sin4ξ0

�
η̄0

þ
�
−2sin3ξ0 cos ξ0ξ000 þ ðsin4ξ0 − 3sin2ξ0cos2ξ0Þξ020

þ 4

r
sin3ξ0 cos ξ0ξ00

�
η̄þ r4

B2l6
U ;ξξjη̄ ¼ 0: ð3:8Þ

Here and below, the vertical bar notation means evaluation
at the Skyrmion solution, i.e., U ;ξξj≡ U ;ξξjξ¼ξ0

etc. η̄ must
be 0 at r ¼ 0 in order to maintain the Skyrmion topology.
Furthermore, for potentials UðξÞ with a less than sextic
approach to the vacuum (i.e., such that limξ→0U ∼ ξb for
b < 6), the Skyrmion solutions ξ0ðrÞ are compactons, i.e.,
take their vacuum value ξ0ðrÞ ¼ 0 for r ≥ R, where R is
the compacton radius. For compactons we impose that
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FIG. 4. The Fourier transform of the field at x ¼ 1 obtained for
the time evolution of squeezed soliton initial data. The upper plot
is obtained for all times and the bottom plot is obtained for t > 10
to exclude the decayed resonance mode. The spectra were
normalized in such a way that the maximum of the power
spectrum for each ϵ is 1. For ϵ > 0, the evolution is clearly
dominated by the oscillational mode. For ϵ < 0, both the
resonance mode and mass threshold evolution dominate the
behavior of the field. The resonance mode decays faster and in
the bottom plot it continues to be visible only for ϵ close to −1=4.
The collective Derrick mode provides a reasonable approximation
only for ϵ > 0, where it seems to be quite close to the oscillational
mode. However, for ϵ < 0, it misses both the mass threshold and
the resonance mode.
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η̄ðrÞ ¼ 0 for r ≥ R, as well. If U ;ξξðξ ¼ 0Þ ≠ 0, then the
condition η̄ðRÞ ¼ 0 follows immediately from the linear-
ized equation (3.8). Whether or under which conditions
η̄ðrÞ ¼ 0 for r ≥ R is maintained by the full nonlinear time
evolution is a different question, which we investigate
numerically.
The Euler-Lagrange equation gets much simpler if we

use the new field variable

dχ ¼ sin2 ξdξ ⇒ χ ¼ 1

2

�
ξ −

1

2
sin 2ξ

�
ð3:9Þ

leading to the action

S ¼ 4πm
Z

dtdr

�
B2l3

4r2
ð_χ2 − χ02Þ − r2l−3U

�
ð3:10Þ

and EL equation

χ̈ − χ00 þ 2

r
χ0 þ 2r4

B2l6
U ;χ ¼ 0: ð3:11Þ

With χ ¼ χ0ðrÞ þ ηðt; rÞ the fluctuation equation now
becomes

η̈ − η00 þ 2

r
η0 þ 2r4

B2l6
U ;χχ jη ¼ 0: ð3:12Þ

The eigenmodes and angular eigenfrequencies for small
fluctuations may be calculated by inserting the ansatz
ηðt; rÞ ¼ cosωt ηðrÞ into the fluctuation equation, leading
to the eigenmode equation

η00 −
2

r
η0 ¼

�
2r4

B2l6
U ;χχ j − ω2

�
η: ð3:13Þ

Using the variable χ, the symmetry-reduced BPS equation
for the axially symmetric ansatz reads

χ0 ¼ � 2r2

Bl3
ffiffiffiffi
U

p
; ð3:14Þ

where in the following we choose the minus sign, corre-
sponding to the Skyrmion boundary conditions χð0Þ ¼
ðπ=2Þ and χð∞Þ ¼ 0 [or χðRÞ ¼ 0 for compactons].
For simplicity, we mainly consider potentials of the

type U ¼ jχj2a in this paper. The corresponding BPS
Skyrmion solutions are compactons for 0 < a < 1,
whereas they decay like e−cr

3

for a ¼ 1 and with some
inverse powers of r for a > 1. We remark that, for general
χ, these potentials do not correspond to well-defined,
single-valued functions on target space [on SU(2), which
as a manifold is just S3], as they should. They are, however,
well-defined target space functions if χ is restricted to
−ðπ=2Þ ≤ χ ≤ ðπ=2Þ (i.e., ξ to −π ≤ ξ ≤ π), which is the
case in all the cases we consider.

1. Step-function potential

In general, the eigenmode equation is too complicated
to find exact analytical solutions, but in the case of the
step-function potential U ¼ ΘðχÞ this is possible. This
potential produces Skyrmions with an exactly constant
baryon density inside the Skyrmion (nucleon or nucleus),
suddenly jumping to 0 at the compacton boundary, which is
not realistic from a physical perspective, but still may
produce useful approximations under some circumstances.
For the step-function potential, the solution to the BPS
equation (3.14) is

χ ¼ 2

3Bl3
ðR3 − r3Þ; ð3:15Þ

where R is the compacton radius. The condition
χð0Þ ¼ ðπ=2Þ leads to

R3 ¼ 3πB
4

l3 ⇒ V ≡ 4π

3
R3 ¼ π2Bl3 ð3:16Þ

(here V is the Skyrmion volume) and to the BPS Skyrmion
energy

E ¼ 4πm
Z

R

0

drð2r2l−3UÞ ¼ 2π2Bm: ð3:17Þ

For the step-function potential, the eigenmode equation
does not depend directly on the BPS Skyrmion, because
U ;χχ ¼ 0 (it depends indirectly on the solution via the
compacton boundary condition),

η00 −
2

r
η0 þ ω2η ¼ 0: ð3:18Þ

This equation is very similar to the ordinary differential
equation (ODE) for the spherical Bessel functions. Indeed,
with the transformations s ¼ ωr, η ¼ s2ψ , this equation
transforms into

ψ 00 þ 2

s
ψ 0 þ

�
ω2 −

2

s2

�
ψ ¼ 0 ð3:19Þ

which is the ODE for spherical Bessel functions for angular
momentum l ¼ 1. The general solution is a linear combi-
nation of the spherical Bessel functions of the first and
second kind, j1ðsÞ and y1ðsÞ, but the boundary condition
ηð0Þ ¼ 0 eliminates y1, so our solution is ψðsÞ ¼ j1ðsÞ or

ηðrÞ ¼ ðωrÞ2j1ðωrÞ ¼ sinðωrÞ − ðωrÞ cosðωrÞ: ð3:20Þ

The second boundary condition ηðRÞ ¼ 0 leads to a
quantization of ω. Indeed,

ωn ¼
zn
R

ð3:21Þ
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where zn is the nth zero of the spherical Bessel function
j1ðzÞ. From (3.20) we may find a more explicit expression
for the zn,

zn ¼ tan zn: ð3:22Þ

This seems to have an additional solution z0 ¼ 0, but this
leads to η≡ 0 and is, therefore, not acceptable. If we
restrict the tan function to the principal branch (p.b.),
−ðπ=2Þ < z < ðπ=2Þ then the zero’s are defined via

ðtanðzn − nπÞÞp:b: ¼ zn; n ¼ 1; 2;… ð3:23Þ

Numerically, z1 ¼ 4.4934, z2 ¼ 7.7252, whereas for large
n, zn ∼ ðnþ 1

2
Þπ. The corresponding excitation energies are

En ¼ ℏωn ¼
ℏ
R
zn: ð3:24Þ

If lengths are measured in fm and energies (masses) are
measured in MeV, then ℏ ¼ 197.33 MeV fm, and

En ¼
197.33

R
zn MeV; ð3:25Þ

where R is given in units of fm. In particular, the lowest
excitation energy is [here R ¼ B

1
3R1, R1 ≡ RðB ¼ 1Þ]

E1 ¼
197.33

B
1
3R1

z1 MeV ¼ 886.7B−1
3R−1

1 MeV: ð3:26Þ

It is a curious observation that, for large n, the En approach
the harmonic oscillator energies En ∼ πℏ

R ðnþ 1
2
Þ. This

does not mean that these energies form the excitations
of one (approximately oscillator) d.o.f. Instead, each ηi
corresponds to an independent d.o.f. that produces its
independent harmonic oscillator spectrum in the semi-
classical approximation.
For a numerical determination of the eigenvalues, it is

convenient to recast the problem as a Sturm-Liouville
(SL) problem in the normal form (see Appendix A). The
corresponding effective potential for the step-function
potential is

Q ¼ 2

x2
ð3:27Þ

and the eigenvalues (which are discrete as a consequence of
the compacton boundary condition) agree with the exact
ones within the numerical precision; see Fig. 5.
Finally, we point out that the case of the step-function

potential has a certain pathology that is related to the
rather singular character of this potential. That is to say, as
follows easily from Eq. (3.84), the frequency of the
collective mode, ωc ¼

ffiffiffiffiffi
15

p
=R, is below the lowest oscil-

lation frequency ω1 ¼ z1=R. The simple reason that

makes this possible is that the wave function ηcol for the
collective mode does not obey the boundary condition
ηcolðr ¼ RÞ ¼ 0. Indeed,

ηcol ¼
d
dq

π

2R3

�
R3 −

r3

ð1þ qÞ3
�����

q¼0

¼ 3π

2R3
r3: ð3:28Þ

We emphasize that this only happens for the step-function
potential. For all other potentials that give rise to compac-
tons, the collective mode obeys ηcolðRÞ ¼ 0, which implies
ωc > ω1.

2. Compacton case—U = χ 2a; a < 1

The step-function potential allows for an exact calcu-
lation of its linear oscillation spectrum, but is not expected
to give a realistic description of nuclear matter. We should,
therefore, analyze other potentials. Qualitatively, depend-
ing on their approach U ∼ ξb to the vacuum (at ξ ¼ 0) they
lead to three different cases: (1) compactons for b ∈ ½0; 6Þ;
(2) exponentially localized solutions b ¼ 6; and (3) power-
like localized Skyrmions for b > 6. Here, for simplicity, we
consider potentials of the type U ¼ χ2a for 0 < a < 1
(observe that b ¼ 6a, and that the step-function potential
may be formally recovered in the limit a → 0). Then, the
BPS equation is

Bl3

2r2
χr ¼ �χa; ð3:29Þ

leading to the solution

χ ¼ π

2

�
1 −

r3

R3

� 1
1−a
; ð3:30Þ

where the compacton radius R is related to the dimension-
ful coupling constant l by

FIG. 5. Effective potential Q with the numerically calculated
energy levels λi ¼ ω2

i for the step-function Skyrme potential, for
the parameter value l6 ¼ 2, corresponding to R1 ¼ 1.494.
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R3 ¼ 3B
2ð1 − aÞ

�
π

2

�
1−a

l3: ð3:31Þ

In our numerical calculations, we choose the fixed value
l6 ¼ 2 for simplicity. For physical applications, on the
other hand, the compacton radius R [or some other radial
observable like, e.g., root-mean-square (RMS) radii with
respect to the energy or baryon charge densities] should be
fitted to a certain value, which leads to different values for
l for different potentials. Concretely, we need the RMS
energy density radii for later comparison, which, for the
potentials considered, are related to the compacton radii
like

R2
E ≡ hr2i ¼ E−1

Z
d3xr2ρEðxÞ

¼ R2Γð5=3Þ ðcþ 1ÞΓðcþ 1Þ
Γðcþ 8=3Þ ;

c≡ 2a
1 − a

; ð3:32Þ

where

ρE ¼ m

�
B2l3

4r4
χ02 þ l−3U

�
ð3:33Þ

is the energy density (per volume unit) of the BPS
Skyrmion.
Our numerical calculation of the linear spectrum now

consists in the following steps. First of all, the BPS solution
(3.30) is inserted into the linear fluctuation equation (3.13),
leading to a Sturm-Liouville-type ODE. This Sturm-
Liouville equation is then transformed into its normal form
(see Appendix A for details), leading to the effective
potential

Q ¼ 2

r2
þ 4að2a − 1Þ

B2l6
r4�

ðπ
2
Þ1−a − r3

3Bl3
2ð1−aÞ

	
2
: ð3:34Þ

For the numerical calculation, we then assume B ¼ 1 and
l6 ¼ 2, leading to

Q ¼ 2

r2
þ 2að2a − 1Þ r4h

ðπ
2
Þ1−a −

ffiffi
2

p ð1−aÞr3
3

i
2

ð3:35Þ

[oscillation frequencies ω̄n for general values of B and l
may easily be calculated from the oscillation frequencies
ωn for the fixed values B ¼ 1 and l6 ¼ 2 via
2ð1=6Þωn ¼ Bð1=3Þlω̄n]. The Sturm-Liouville equation in
normal form is then solved numerically with the
SLEIGN2 package [41], and we also double-checked
our calculations with the MATSLISE package [42].

Concretely, we show the numerical results for U ¼ χ
2
3,

i.e., a ¼ 1
3
, corresponding to a quadratic, pion-mass type

approach to the vacuum. The resulting compacton, com-
pacton radius, and effective potential are

χ ¼
�
2

3

�
3
�

1

Bl3
ðR3 − r3Þ

�
3=2

; ð3:36Þ

R ¼
�
9

4

�
π

2

�
2=3
�

1=3
B1=3l; ð3:37Þ

and

Q ¼ 2

r2
−
9

4

r4

ðR3 − r3Þ2 : ð3:38Þ

The results of the numerical calculation are shown in Fig. 6.
In general, for all potentials that lead to compact BPS
Skyrmions, one has an infinite number of discrete excita-
tion levels. This is a direct consequence of the compact
nature of these Skyrmions with a fixed boundary.

3. Exponentially localized Skyrmions, U = χ 2

Now, we investigate a potential that leads to more than
exponentially localized BPS Skyrmions, i.e., U ¼ χ2. This
potential is, in fact, quite special as the corresponding BPS
model action is quadratic in the scalar field χ,

S ¼ 4πm
Z

dtdr
�
B2l3

4r2
ð_χ2 − χ02Þ − r2l−3χ2

�
: ð3:39Þ

As a consequence, the field equation for the field χ is linear,

χ̈ − χ00 þ 2

r
χ0 þ 4r4

B2l6
χ ¼ 0; ð3:40Þ

and a linear superposition of solutions is a valid way of
constructing new solutions. Obviously, in order to stay in a
fixed topological sector, such a superposition cannot
change the boundary conditions.
This potential leads to a noncompacton solution. Indeed,

the BPS equation is

Bl3

2r2
χr ¼ �

ffiffiffiffi
U

p
¼ �χ ð3:41Þ

and [χð0Þ ¼ ðπ=2Þ; χð∞Þ ¼ 0]

χ ¼ π

2
e−

2r3

3Bl3 : ð3:42Þ

Qualitatively, this more than exponential localization can
be understood as the existence of an effective massmeff that
grows with distance
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χ ¼ π

2
e−

meff r
3 ; meff ≡ 2r2

Bl3
: ð3:43Þ

In other words, there is a position-dependent mass thresh-
old. It diverges with r → ∞, providing an infinite mass
threshold.
The eigenmode equation reads

η00 −
2

r
η0 ¼

�
4r4

B2l6
− ω2

�
η ð3:44Þ

and the effective potential in normal form is

Q ¼ 2

r2
þ 4r4

B2l6
: ð3:45Þ

In agreement with the observed infinite mass threshold, this
potential grows without bound for r → ∞, giving rise to an
infinite number of discrete eigenvalues; see Fig. 6.
As the BPS Skyrmions are no longer compactons, there

is no compacton radius available to characterize the size of
the soliton. We want to use, again, the energy RMS radius,

R2
E ¼ hr2i≡ 1

E
4π

Z
∞

0

drr2 · ρE · r2; ð3:46Þ

where ρE is the energy density, leading to the energy
E ¼ 4π

R∞
0 drr2 · ρ. This gives

E ¼ 2π3mB
1

4
ð3:47Þ

and

R2
E ¼ l2B2=34

Z
dxx4e−4x

3=3

¼ l2B2=34 · 0.1863

¼ l2B2=30.7452: ð3:48Þ

Hence,

RE ¼ 0.8632lB1=3: ð3:49Þ

It is interesting to note that this case is qualitatively
similar to the compacton case. The spectrum is discrete
and infinite.

FIG. 6. [(1) and (2)] Effective potentialQ with the first few energy levels for the potential U ¼ χ2=3. [(3) and (4)] Effective potentialQ
with the first few energy levels for the potential U ¼ χ2. In both cases, the scale constant is l6 ¼ 2.
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Note that the perturbation equation, as usually happens
in a linear theory, is completely independent of the form
of the background solution. Thus, the eigenmode equation
is valid in the nontrivial topological background (static
soliton) as well as in the topologically trivial case,
describing waves propagating around the vacuum χ ¼ 0.
As a consequence, we observe a “confinement” of radial
waves with a given frequency ω in a segment ½0; Rcrit�
where Rcrit is the larger root of

QðRcritÞ − ω2 ≡ 2

R2
crit

þ 4R4
crit

B2l6
− ω2 ¼ 0 ð3:50Þ

that, for large frequency, may be approximated by

R2
crit ¼

Bl3

2
ω −

1

ω2
þ � � � ð3:51Þ

Indeed, for r > Rcrit, the potential term Q − ω2 in the
Sturm-Liouville equation in normal form (the Schrödinger-
type equation) changes sign, and the waves are
exponentially suppressed. This means that, from an initial
perturbation, no wave can propagate to infinity. Instead,
they are completely “confined” within a finite distance
corresponding to the highest frequency (higher frequency
perturbations can propagate to larger distances).

4. Compacton as a limit

Compactons are less regular objects than solitons with
infinite tails. It is, therefore, an interesting question and a
nontrivial consistency check for our results on compactons
whether they can be recovered from a certain limit of the
results for solitons with tails. Here we see in a specific
example that this is, indeed, the case. Concretely, we
choose the following one-parameter family of potentials,

Uϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ χ2

q
− ϵ: ð3:52Þ

For ϵ > 0, this potential behaves like χ2 close to the
vacuum, and the BPS Skyrmions have an exponential tail,
like the ones in Sec. III A 3. In the limit ϵ → 0, on the other
hand, the potential is jχj and leads to compact BPS
Skyrmions. The soliton solution for nonzero ϵ in implicit
form reads

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ χ2

q
þ ϵ

r
−

ffiffiffiffiffi
2ϵ

p
arc tanh

 
1ffiffiffiffiffi
2ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ χ2

q
− ϵ

r !

¼ −
2

3Bl3
ðβ þ r3Þ; ð3:53Þ

where β is an integration constant that is given by

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ

�
π

2

�
2

s
þ ϵ

vuut −
ffiffiffiffiffi
2ϵ

p
arc tanh

0
B@ 1ffiffiffiffiffi

2ϵ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ

�
π

2

�
2

s
− ϵ

vuut
1
CA ¼ −

2

3Bl3
β: ð3:54Þ

Or, putting everything together

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ χ2

q
þ ϵ

r
−

ffiffiffiffiffi
2ϵ

p
arc tanh

 
1ffiffiffiffiffi
2ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ χ2

q
− ϵ

r !
¼ ð3:55Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ

�
π

2

�
2

s
þ ϵ

vuut −
ffiffiffiffiffi
2ϵ

p
arc tanh

0
B@ 1ffiffiffiffiffi

2ϵ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ

�
π

2

�
2

s
− ϵ

vuut
1
CA −

2

3Bl3
r3: ð3:56Þ

Then, the effective potential is

Q ¼ 2

r2
þ 2r4

B2l6
ϵ2

ðϵ2 þ χ2Þ3=2 : ð3:57Þ

As can be seen in Fig. 7, the effective potentials for nonzero
ϵ converge to the effective potential for the compacton
potential jχj, maintaining the infinite wall at a finite r ¼ R
(the compacton radius for the case ϵ ¼ 0). The limit,
therefore, reproduces the wave functions ηi with the

boundary conditions ηiðRÞ ¼ 0 and the corresponding
frequencies.

5. Powerlike localized Skyrmions, U = χ 2a, a > 1

Skyrmions with powerlike hair are given, e.g., by the
following class of potentials U ¼ χ2a, a > 1. The BPS
equation is

χ0 ¼ � 2r2

Bl3
χa; ð3:58Þ
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leading to the solution

χ ¼
�
3

2

Bl3

a − 1
·

1

r3 þ 3
2
Bl3
a−1 ðπ2Þ1−a

� 1
a−1
: ð3:59Þ

The effective potential reads

Q¼ 2

r2
þ 2 · 2að2a− 1Þ r4

B2l6

 
3

2

Bl3

a− 1
·

1

r3 þ 3
2
Bl3
a−1 ðπ2Þ1−a

!
2

:

ð3:60Þ

So, for r → ∞

Q ∼
1

r2
ð3:61Þ

for any value of the parameter a. As the effective potential
tends to 0, the Sturm-Liouville problem cannot have any
discrete states with positive energy, i.e., no oscillating
modes; see Fig. 8.
Again, we want to define the energy RMS radii for later

use,

R2
E ¼ hr2i ¼ R2Γð5=3ÞΓðc − 5=3Þðc − 1Þ

ΓðcÞ ;

c≡ 2a
a − 1

; ð3:62Þ

where R is related to the parameter l like the compacton
radius is for a < 1, i.e.,

R3 ¼ 3B
2ða − 1Þ

�
π

2

�
1−a

l3: ð3:63Þ

Generically, for a > 1 the effective potential has a
repulsive core ∼r−2 and a decaying tail ∼r−2. This
excludes any discrete spectrum. Potentials with powerlike

localization are, therefore, qualitatively different from the
two previously discussed cases. What can happen, instead
(and does happen for the cases considered here; see Fig. 8),
is the emergence of a small potential barrier in the region
of finite r. This may lead, in turn, to the appearance of
resonance modes instead of vibrational modes; see the next
section. Furthermore, one cannot exclude the possibility
that for some potentials with this powerlike approach to
the vacuum, a small negative well emerges. If this well is
sufficiently deep, it may support a bound state with
negative energy, that is, a purely imaginary frequency.
The corresponding mode is exponentially growing and can
be interpreted as a sign of an instability in the model. In all
the examples considered here (for powerlike localized
Skyrmions), however, no such instability occurs.

B. Resonance modes

Resonance modes or quasinormal modes correspond to
modes with a complex frequency, so for their calculation
it is useful to consider the complexified version of the
linear fluctuation equation (3.12). The details of its
solution are given in Appendix B; here we just make
some comments.
First of all, one should be aware that our choice of

potentials is rather arbitrary. In contrast to the perturbative
L024 Skyrme model, where the quadratic part of the
potential (i.e., its form close to the vacuum) is uniquely
dictated by the mass of the pionic excitations, there is no
such phenomenological condition for the BPS potential. Of
course, it should provide reasonable values for observables.
Quite interestingly, some properties of nuclei like, e.g., the
binding energies of atomic nuclei, only weakly depend
on the potential. Also for thermodynamical properties of
dense (high pressure) nuclear matter, the potential only
gives subleading corrections, while the sextic term always
dominates. This gives some freedom in the choice of the
potential. Obviously, different potentials lead to different
quantitative predictions also for oscillations and resonances
where, however, some general, qualitative features of

FIG. 8. Effective potential Q for U ¼ χ2a, a > 1, for the scale
constant l6 ¼ 2.FIG. 7. Effective potentials Q for Uϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ χ2

p
− ϵ, for the

scale constant l6 ¼ 2.
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vibrations in the BPS Skyrme model are potential inde-
pendent. Let us discuss them in some detail.
(1) The role of the vacuum approach: U ∼ χ2a as χ → 0.

For powerlike localized BPS Skyrmions, a > 1,
the effective potential of the linearized problem
tends to 0 at spatial infinity, and no mass threshold
is present. This excludes the existence of oscillating
modes, while it opens the possibility for the for-
mation of quasinormal modes.
For exponentially localized BPS Skyrmions,

a ¼ 1, the effective potential diverges at spatial
infinity. This results in the appearance of infinitely
many oscillating modes and the absence of reso-
nances.
Finally, for a < 1 (compact BPS Skyrmions), the

effective potential also diverges, but at a finite
distance (compacton radius) and, again, infinitely
many oscillating modes are observed. This is con-
firmed by the full (not linearized) numerical com-
putation, as the linearization is not completely
trustworthy for compactons close to their boundary.
A very peculiar feature of the BPS model is the

fact that the effective potential never approaches a
finite, nonzero value at spatial infinity. Therefore, it
is not possible to have a finite number of oscillating
modes in the BPS Skyrme theory.

(2) The existence of a barrier for the effective
potential—narrow and wide resonances.
For any potential U that generates powerlike

localized BPS Skyrmions, a potential barrier may
form for the effective potential Q. Its height and
width depend on the details of the potential U (and
probably can be related to some specific features
of U). As we found, the bigger the barrier, the
more narrow resonance modes exist, as their decay
is strongly suppressed by tunneling through a
powerful barrier. However, beside these narrow
resonances, there are also wide quasinormal states
with Ω2 > Qmax. As they can go through the barrier
relatively freely, they are short-lived excitations.
The number of narrow and wide resonance modes

can, therefore, be controlled by a suitable choice of
U and is not related to a particular vacuum approach
(besides the fact that it must lead to powerlike
localized BPS Skyrmions) and, therefore, is inde-
pendent of the corresponding (mean-field) equation
of state, which is affected by the close to vacuum
behavior.
The existence of the barrier is a qualitatively

different feature, as compared to the perturbative
massless Skyrme model L24. There, Qeff also tends
to 0 at spatial infinity, but it develops a little well at
an intermediate distance, which allows for a reso-
nance mode (but there is no negative energy bound
state). In principle, one cannot exclude a situation

where a BPS potential provides a well rather than a
barrier. However, the existence of such a potential is
an open question.

It is worth noticing that, for our choice of the potentials,
one can have an arbitrary number of narrow resonances
by assuming a sufficiently close to 1. The reason for this is
that any of the narrow resonance modes originates in a
particular oscillating mode of the a ¼ 1 model.
Quasinormal modes with Ω2 > Qmax develop into wide
resonances that quite quickly (as a increases) interact with
the spectrum, leading to very complicated FFT structures.
Once a further grows, more narrow resonances transform
into wide ones. In the full dynamics, these wide quasi-
normal modes decay very quickly, and the vibration is soon
dominated by the few first still narrow resonances. Finally,
only wide quasinormal states remain.

1. Resonances for the potentials U = χ 2a, a > 1

In the case of a ¼ 1, the linearized effective potential
QðxÞ tends to infinity as x → ∞. However, for a > 1, the
potential vanishes at spatial infinity. For a > 1 but very
close to 1, the potentialQðxÞ initially differs insignificantly
from the a ¼ 1 case. The bound state solution for a ¼ 1 is a
good approximation of a solution for small deviations from
a ¼ 1. However, at some point the potential Q reaches its
maximum and vanishes at x → ∞. It also forms a barrier
with maximum Qmax. This finite barrier allows tunneling.
Bound modes from a ¼ 1 become resonances or quasi-
normal modes as a > 1. The larger a, the smaller are the
height and width of the barrier. Resonances with frequen-
cies below

ffiffiffiffiffiffiffiffiffiffi
Qmax

p
need to tunnel through that barrier. This

results in small Γ and a long half-life of the resonances.
These resonances are sometimes too narrow to be seen on
the general scan of the cross section (see Fig. 9).
Resonances with frequencies above

ffiffiffiffiffiffiffiffiffiffi
Qmax

p
are not trapped

inside the potential well and have much larger values of Γ.
They become wide and dissolve as a grows.
For later use, we also give the numerical values of the

first (lowest) resonance mode ω1 ¼ Ω1 þ iΓ1 in Table I, for
different values of a, and plot both of them in Fig. 10.

2. Potential U = ð1 − cos ξÞ6
As mentioned already, resonance modes for the class of

potentials U ¼ ð1 − cos ξÞα, α > 3, have been studied
numerically in [40]. So, for completeness, let us also
analyze the potential U ¼ ð1 − cos ξÞ6. Close to the vac-
uum, it behaves like ξ12, i.e., like χ4, leading to powerlike
localized Skyrmions. We, therefore, expect no oscillations
but possible resonances. The BPS equation is (in the
original ξ profile function)

Bl3

2r2
sin2 ξξ0 ¼ �ð1 − cos ξÞ3; ð3:64Þ
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leading to the solution

ξ ¼ 2 arccot

�
21=3r

B1=3l

�
: ð3:65Þ

Now, we want to move back to the perturbation equation
with the χ variable. To do this, one has to express Uχχ in
terms of ξ,

Uχχ ¼ Uξξ

�
dξ
dχ

�
2

þ Uξ
d2ξ
dχ2

; ð3:66Þ

and, of course,

Uχχ jχ¼ Uξξ

�
dξ
dχ

�
2

þ Uξ
d2ξ
dχ2

����
ξ

: ð3:67Þ

So, we do not need to express ξ as a function of χ.
Now,

dξ
dχ

¼ 1

sin2ξ
;

dξ

dχ2
¼ −2

cos ξ
sin5ξ

ð3:68Þ

and

Uξ ¼ 6ð1 − cos ξÞ5 sin ξ;
Uξξ ¼ 30ð1 − cos ξÞ4sin2ξþ 6ð1 − cos ξÞ5 cos ξ: ð3:69Þ

Then,

Uχχ ¼ 6
ð1 − cos ξÞ4

sin4 ξ
½5 sin2 ξ − cos ξð1 − cos ξÞ�: ð3:70Þ

For the solution we find

cos ξ ¼ cot2 ξ
2
− 1

cot2 ξ
2
þ 1

¼ y2 − 1

y2 þ 1
; ð3:71Þ

1 − cos ξ ¼ 2

y2 þ 1
; ð3:72Þ

sin ξ ¼ 2 cot ξ
2

cot2 ξ
2
þ 1

¼ 2y
y2 þ 1

; ð3:73Þ

where y≡ 2
1
3r

B
1
3l
. So, the effective potential is
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FIG. 9. Cross section multiplied by ω2=4π: sin2 δ0. Maxima indicate approximately real values of the resonant frequency. We can see
the drift of the resonance as the barrier is crossed. When the frequency is larger than ωmax ¼

ffiffiffiffiffiffiffiffiffiffi
Qmax

p
, the resonance becomes wide.

Bright lines show the position of narrow resonances (too narrow to be seen on the scan). We remark that in the left plot the lowest
(fundamental) resonance for small values of a is too narrow to be visible.

TABLE I. Frequencies and decay widths of the first resonance,
for different values of a.

a Ω1 Γ1

1.8 3.568 028 5.951 48 × 10−2

1.7 3.491 566 3.511 83 × 10−2

1.6 3.425 363 1.666 94 × 10−2

1.5 3.361 944 4.464 69 × 10−3

1.4 3.295 956 3.786 20 × 10−4

1.3 3.224 497 2.454 95 × 10−6

1.2 3.149 303 1.262 04 × 10−11

1.1 3.071 850 <10−11

1.0 2.992 676 0.000 00
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Q ¼ 2

r2
þ 2r4

B2l6
12

2
1
3r

B
1
3l

�
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2
1
3r

B
1
3l

�
2
�



1þ



2
1
3r

B
1
3l

�
2
�
2
: ð3:74Þ

This effective potential approaches 0 for r → ∞, so it
cannot have linearly stable states for discrete eigenvalues,
as expected. On the other hand, it develops a small barrier,
so one or several resonance states may occur. Both a linear
simulation and a full nonlinear numerical study reveal that
this is, indeed, the case. Concretely, we find for the first
resonance ω1 ¼ Ω1 þ iΓ1 in the linearized problem
Ω1 ¼ 5.118, Γ1 ¼ 0.8643, and half-life T1 ¼ 0.8020.
From the full nonlinear simulation we get the results shown
in Table II. This should be compared to the values reported

in [40], ΩIL
1 ¼ 4.71 and TIL

1 ¼ 0.83. We find that the half-
lives (decay widths) essentially agree, whereas there is a
difference of about 10% for the frequencies.

C. The collective mode approximation

Let us now investigate the collective scaling (Derrick
mode) approximation for the BPS model. This means that
we use the variational ansatz

χðr; tÞ ¼ χ0

�
r

ρðtÞ
�

ð3:75Þ

and plug it into the BPS action. Then we get

L ¼ _ρ2

ρ3
A −

1

ρ3
B − ρ3C; ð3:76Þ

where

A ¼ 4πm
Z

B2l3

4
χ20;rdr; ð3:77Þ

B ¼ 4πm
Z

B2l3

4r2
χ20;rdr; ð3:78Þ

C ¼ 4πml−3
Z

Uðχ0ðrÞÞr2dr: ð3:79Þ

Obviously, B ¼ C and their sum gives the soliton
energy, Bþ C ¼ E0. Now, we expand it around 1, i.e.,
ρðtÞ ¼ 1þ qðtÞ, where q is a small parameter. It gives

L ¼ −E0 þ A _q2 −
9

2
E0q2 ð3:80Þ

and the oscillation frequency is

ωc ¼
ffiffiffiffiffiffiffiffi
9E0

2A

r
: ð3:81Þ

Using the BPS equation we can write

A ¼ 4πml−3
Z

Uðχ0ðrÞÞr4dr ¼
1

2
E0R2

E; ð3:82Þ

E0 ¼ 2 · 4πml−3
Z

Uðχ0ðrÞÞr2dr; ð3:83Þ

and

ωc ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Uðχ0ðrÞÞr2drR
Uðχ0ðrÞÞr4dr

s
¼ 3

RE
; ð3:84Þ

where RE is the energy RMS radius defined in (3.32). Then,
e.g., for the powerlike localized solutions we find

TABLE II. Frequencies and decay widths of the first resonance,
for the potential ð1 − cos ξÞ6. The values for r are the radii for
which the fit has been performed.

r Ω1 Γ1

1 5.1322 0.8051
2 5.1281 0.8181
3 5.1296 0.8200

FIG. 10. Resonance frequencies and decay widths for the first
(fundamental) resonance for different values of a. In the first
plot we also compare with the frequency of the collective
(Derrick) mode.
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ωc ¼
3

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − 1

aþ 1

Γð 2a
a−1Þ

Γð5
3
ÞΓ



aþ5
3ða−1Þ

�
;

vuut ð3:85Þ

where R is defined in (3.63). In the limit a ¼ 1, e.g., we get
(for B ¼ 1, l6 ¼ 2)

ωcða ¼ 1Þ ¼ 32=3

ffiffiffiffiffiffiffiffiffi
2

Γð5
3
Þ

s
≈ 3.096; ð3:86Þ

which is only 3% above the true lowest frequency
ω1 ¼ 2.993.

D. Full numerical time evolution

To test our predictions, we have solved the equations of
motion numerically. We have applied a method of lines
with the fourth order Runge-Kutta method for time step-
ping, and a five-point stencil method to discretize spacial
derivatives. For the boundary condition at r ¼ 0, we
assumed a vanishing perturbation and its derivative to
match the singularity expansion. We have tested several

initial conditions, but for the scans we have used the
following initial conditions:

χðx; 0Þ ¼ χ0ðxÞ
�
1þ Ar4

1þ r4
e−ðr−1Þ2

�
;

χtðx; 0Þ ¼ 0; ð3:87Þ

where χ0ðxÞ is a static Skyrmion solution. We have decided
not to use the squeezed Skyrmion initial condition, since
the numerical evolution became unstable, probably due to
the violation of the singular expansion for r ¼ 0. Unless
stated otherwise, A ¼ 10−4.
Our aim was to find the most strongly excited frequen-

cies. Therefore, we applied the FFT to the field χtðxÞ
gathered at x ¼ 1. For a > 1, we could see many reso-
nances as discussed in the previous section. For a values
close to 1 we observed many narrow resonances (Fig. 11).
As a increases, the potential barrier decreases and the
narrow resonances become wider. For a ¼ 1.80 we could
observe only the lowest narrow resonance corresponding to
the lowest bound state for a ¼ 1.

(a)

(b)

(c)

(d)

FIG. 11. Evolution of the field and power spectra for potentials U ¼ χ2a for different a > 1 [(a) a ¼ 1.80; (b) a ¼ 1.50; (c) $a ¼ 1.20;
(d) a ¼ 1.10]. For a ¼ 1.10 there is a number of narrow excited resonances, resulting in oscillations with almost constant amplitude,
whereas for a ¼ 1.80 there is a single and much wider resonance that manifests itself with decaying oscillations.
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We gather all the results in a single scan showing spectra
for different values of a: 0.5 < a < 2.0 (Fig. 12). We have
normalized the spectra so that the largest maximum would
be equal to 1 to have a better comparison between narrow
and wide peaks. We have also added the numerically
obtained (from ODEs) narrow resonance positions and
the Derrick mode. The resonant structure resembles the
structure shown for the linearized cross section Fig. 9.
However, the narrow peaks are now clearly visible even for
ω2 < Qmax. Discrete Fourier transform in a sense averages
over the frequencies, and even if the dominant frequency
does not match the exact value of the probing frequency, it
influences its neighbors and is easily seen on the scan.
Moreover, the narrow resonances are the ones that persist
the longest and have the largest contribution in the
spectrum. Cross sections, as seen in Fig. 9, are calculated
also for discrete frequencies, but if a narrow resonance is
located between those frequencies it may not be seen.
Another discrepancy between the cross section and the
power spectrum is that wide resonances are clearly seen on
the cross section, but they do not contribute much in the
power spectrum, because their lifetime is too short.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10

Pa
ra

m
et

er
a

Frequency

osc./res. modes
ωmin
ωmax

coll. mode

−2.5

−2

−1.5

−1

−0.5

0

N
or

m
al

iz
ed

lo
g

Φ
x

1
ω

FIG. 12. The power spectra scan for different a. It is clearly
seen that the peaks from the full numerical time evolution
precisely coincide with the frequencies of the bound modes
for a < 1 (for compactons) and with the resonance frequencies
for a > 1. It is also visible that for ω > ωmax the resonances
quickly broaden and disappear. For comparison, we also plot the
Derrick mode, which is close to the first resonance.

FIG. 13. Evolution of the perturbed compacton with A ¼ 0.1 and a ¼ 0.8. It can be seen that some radiation escapes the compacton,
although, at least for the chosen parameter values, the amplitude of the radiation is very small (observe the logarithmic scale; in the log
plot, we actually plot jχj). Also, the frequency of the radiation outside the compacton seems to increase, and the radiation seems to
“freeze” at some finite distance.
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1. Compacton

We have also tested numerically our conjecture about
compacton stiffness. We have found that compactons are
not rigid bodies and, when perturbed, they pulse and radiate
(Fig. 13). However, the nature of the radiation is nonlinear
and strongly depends on the amplitude of the perturbation.
This is, in fact, not a surprise, since the linear approxima-
tion does not work very well in the case of compactons. For
each amplitude of small perturbation, there is a region near
the surface of the compact Skyrmion where the perturba-
tion is larger than the background field around which the
linearization is made. Near the surface, nonlinearities start
to dominate the evolution of the system, no matter how
small the perturbation was. Formally, the linearization has a
zero radius of convergence. Despite all this, we have found
that the linearization works extremely well for quite a large
range of the perturbation amplitude and the parameter a;
see Fig. 14. Usually, there exists some critical amplitude of
the perturbation, above which the compacton starts to
radiate quite intensely. Below that amplitude, the radiation
can be negligible. Moreover, compactons with larger a < 1
have a softer surface, and it is easier for the perturbation to

leave the Skyrmion. For a sufficiently close to 1, the
radiation leaving the compacton behaves rather similar to
the a ¼ 1 case and may be analyzed by a perturbation in
ϵ ¼ 1 − a; see Appendix C. The smaller the a, on the other
hand, the better our approximation works.

2. Nonlinearity

As we discussed above, the nonlinearity plays an
extremely important role in the case of compactons. We
have also checked how it influences the frequencies of
bound modes and resonances. We expect that the frequen-
cies will change when we change the amplitude of the
perturbation, which is a well-known effect. For potentials
for which the solutions are known analytically (such as the
harmonic oscillator or Coulomb potentials), it is quite easy
to find how the energy depends on the perturbation
parameter. Here, we only present the scan of how the
dominating frequencies change with the perturbation
amplitude (Fig. 15). For a > 1, the resonance frequency
grows as we increase the amplitude of the perturbation for
all resonances except for the first one. a ¼ 1 is a linear case,

(a)

(b)

(c)

(d)

FIG. 14. Evolution of the field and power spectra for potentials U ¼ χ2a for different a < 1 (the compacton case) [(a) a ¼ 0.90;
(b) a ¼ 0.80; (c) a ¼ 0.70; (d) a ¼ 0.60]. The amplitude of oscillations does not seem to change showing that hard wall approximation
provides an appropriate description. The peaks correspond to bound states of the compacton.
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and the frequencies do not depend on the amplitude. For
a < 1, the frequencies decrease as the amplitude grows.

IV. CONCLUSIONS

The main result of the present paper is a detailed study of
radial oscillations and resonances (quasinormal modes) of
Skyrmions in the BPS Skyrme model, where we performed
both a linearized and a full nonlinear analysis. Although
we did most of our calculations for a particular class of
Skyrme potentials U ∼ jχj2a, our results are, in fact, much
more general, because the resulting modes mainly depend
on the vacuum approach of the potential, U ∼ ξb for ξ → 0,
and not on the particular potential. Concretely (remem-
ber b ¼ 6a),

(i) for b ∈ ½0; 6Þ we have compact Skyrmions. The
effective potential tends to (plus or minus) infinity at
the compacton boundary. This results in an infinite,
discrete oscillating spectrum.

(ii) For b ¼ 6 we have stronger-than-exponentially
localized Skyrmions (≃ expð−r3Þ). The effective
potential tends to infinity at spatial infinity. Hence,
the spectrum is still infinite and discrete.

(iii) For b ∈ ð6;∞Þ we have powerlike localized
Skyrmions. It is a rather surprising feature of the
BPS Skyrme model that the resulting effective
potential always tends to 0 (for arbitrary b > 6),
independently of the particular asymptotics of the
potential. Hence, there is no discrete spectrum, i.e.,
no oscillating modes. On the other hand, resonance
modes may appear. We found resonance modes for
all the potentials we considered. Concretely, for
a > 1 but close to 1 we found a large number of
narrow resonances, whereas for larger a all reso-
nances except for the first one disappear, and the first
resonance gets much broader.

All these results of the linearized analysis are fully
confirmed by the nonlinear calculations. We find that the
linearized method works well even in the case of compac-
tons, which is somewhat surprising because of the intrinsi-
cally nonlinear character of compactons.
Concerning physical applications of our results, first of

all, we have to take into account the fact that the BPS
Skyrme model is only a submodel, whereas a detailed
description of physical properties of hadronic or nuclear
matter requires the presence of further terms (the general

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
(a) a 1.50

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
(b) a 1.20

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
(c) a 1.05

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
(d) a 0.95

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 2 4 6 8 10 12

(e) a 2 3

A
m

pl
itu

de
A

A
m

pl
itu

de
A

A
m

pl
itu

de
A

A
m

pl
itu

de
A

A
m

pl
itu

de
A

Frequency ω

4

3.5

3

2.5

2

1.5

1

0.5

0

N
or

m
al

iz
ed

lo
g

Φ
ω

x
1

FIG. 15. Frequency shift with amplitude due to the nonlinearity for different a [(a) a ¼ 1.50; (b) a ¼ 1.20; (c) a ¼ 1.05; (d) a ¼ 0.95;
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Skyrme model). Within the BPS submodel it is, therefore,
wiser to limit oneself to estimates rather than detailed fits in
a first step. With this in mind, we take advantage of the fact
that the first excitation frequency ω1 is described rather
well by the collective mode frequency ωc for a rather wide
range of values for a, both for true oscillations a ≤ 1 and
for resonances a > 1 [more precisely ωc ∼ Ω1 ¼ Reðω1Þ in
this case]. But the collective mode frequency is related to
the energy RMS radius RE by the very simple relation ωc ¼
ð3=REÞ in all cases, so to find a physical value for ωc we
just have to find (or assume) one for RE. Assuming, e.g., the
nuclear radius per baryon number, RE ¼ 1.25 fm, we get
for the excitation energy E1 ¼ ℏω1 ≃ ℏωc,

E1 ≃ 3 · 197.3
1.25

MeV ¼ 473.5 MeV: ð4:1Þ

This compares reasonably well with the excitation energy
of the Roper resonance,

ΔErop ¼ Mrop −Mn ¼ ð1440 − 939Þ MeV ¼ 501 MeV:

The fact that for a wide class of potentials we find several
resonances is interesting from a physical perspective, as well.
Indeed, together with the Roper resonance, the existence of
at least two higher excitations (higher Roper resonances) is
experimentally established. On the other hand, there are
strong numerical indications that in the standard Skyrme
model (without the sextic term) only one resonance exists. It
is, therefore, plausible to conjecture that the inclusion of the
sextic term [i.e., considering the full generalized Skyrme
model of Eq. (1.1)] might induce higher resonances and lead
to a realistic description of Roper resonances. This will be
further investigated in a forthcoming publication.
On the other hand, the axially symmetric multi-

Skyrmion solutions considered here do not provide a
realistic description of the giant monopole resonances.
The excitation energy of the giant monopole resonance
for sufficiently large nuclei extracted from different experi-
ments is approximately

Egm;B ≃ 80B−1
3 MeV; ð4:2Þ

FIG. 16. Evolution of the perturbed compacton, with the perturbation induced by a time-dependent (energy nonconserving) boundary
condition inside the compacton (at r ¼ 2), χð2; tÞ ¼ χ0ð2Þ þ A sinðωtÞ, for A ¼ 0.001, ω ¼ 4, and a ¼ 0.95. The dashed line is the
unperturbed compacton. It can be seen that some radiation escapes the compacton although, at least for the chosen parameter values, the
amplitude of the radiation is very small (observe the logarithmic scale; in the log plot, we actually plot jχj). Also, the frequency of
the radiation outside the compacton seems to increase with distance. The radiation no longer freezes at a finite distance, because of the
energy nonconserving boundary condition that effectively pumps energy into the system.
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see, e.g., [43], which extrapolates for B ¼ 1 to 80 MeV.
The excitation energies calculated in the present paper
have the same scaling behavior with the baryon number B,
i.e., E1;B ¼ B−1

3E1, but with a value for E1 that is about six
times the value for the giant monopole resonance
Egm;B¼1 ≃ 80 MeV. We think that this result just demon-
strates that the axially symmetric ansatz (3.5) leading to
BPS Skyrmions with spherically symmetric energy den-
sities for arbitrary B is not adequate for the giant monopole
resonance. This is, in fact, not so surprising. As mentioned,
a detailed and quantitatively reliable description of had-
ronic and nuclear matter requires the full generalized
Skyrme model, and the field equations of the full model
(or of the original Skyrme model without the sextic term)
are not compatible with the axially symmetric ansatz (3.5).
In the original Skyrme model and variants thereof, sub-
structures (e.g., B ¼ 1 substructures, i.e., individual nucle-
ons, or B ¼ 4 substructures, i.e., alpha particles) are visible
in higher B Skyrmions, and these substructures are most
likely still present in the solutions of the full model, owing
to the huge symmetries of the BPS submodel (which is
essentially compatible with any shape). But Skyrmions
with substructures contain regions with small energy
density also in their interior and should, therefore, be
softer with respect to compressions with small amplitudes

and lead to smaller excitation energies. We remark that a
similar hint that higher B Skyrmions with particlelike
substructures are more adequate even for the BPS sub-
model may be found already in its application to nuclear
binding energies (as commented in more detail in [17]).
Indeed, for axially symmetric BPS Skyrmions, where the
individual nucleons are completely dissolved, the isospin
moments of inertia I grow like B

5
3, leading to too small

isospin excitation energies for large B (large nuclei).
For Skyrmions with substructures, on the other hand, the
total isospin moment of inertia is the sum of the contributions
of the substructures, leading to I ∼ B, and the resulting
isospin excitation energies essentially match the “asymmetry
energy” contribution of the Weiszäcker formula. (Even
without these corrections, however, the BPS submodel
already leads to much more accurate binding energies than
the original model because of its BPS property.)
Let us remark that, while the BPS submodel is particu-

larly stiff with respect to the monopole (radially symmetric)
excitations considered in this paper, it gives rise to
much softer modes. The static energy density is invariant
under SDiff transformations (volume-preserving diffeo-
morphisms) on physical space, so the corresponding modes
may be excited with arbitrarily small frequencies. In the
full generalized Skyrme model the sextic term, therefore,

FIG. 17. Evolution of the perturbed compacton, as in Fig. 16, but for the magnified radiation zone and for a nonlog scale.
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softens vibrations for modes that are close to SDiffs,
whereas it stiffens vibrations of modes that significantly
change the volume of the original soliton (like the monop-
ole excitation). In other words, the sextic term has a rather
interesting and nontrivial influence on the spectrum of
vibrations of Skyrmions, which might lead to applications
and new results in the description of baryon resonances. A
detailed discussion of these issues is, however, beyond the
scope of the present paper.
Finally, we emphasize that the methods developed and

applied in this article are of more general interest, because
they may be applied to a much wider class of models than the
ones considered here. They may be used for any nonlinear
field theory where the field equations are compatible with
spherical symmetry, in any dimensions. Some additional,
rather general findings concern the issue of compactons. We
found that, strictly speaking, the propagation of small
perturbations is not confined to the interior of the compacton,
so that, strictly speaking, the linear analysis is not correct. It
results, however, in only a tiny amount of radiation escaping
the compacton (in Fig. 13, e.g., for a perturbation with an
amplitude of 0.1 the amplitude of the radiation outside the
compacton is about 10−6–10−8). Also, the radiation seems to
freeze, while increasing its frequency, at some finite distance
from the compacton radius, i.e., it does not escape to infinity.
For comparison, we show further cases of the evolution of
perturbed compactons in Figs. 16 and 17. The behavior is
similar to the previous case, although the radius where the
radiation freezes grows with time, because of the energy
nonconserving boundary condition used here. A more
detailed discussion of the radiation escaping compactons
is given in Appendix C. We conclude that, effectively, the
assumption that the compacton confines perturbations seems
to work. This can have some applications in the brane world
mechanism for compact branes [44], and it also supports the
stability of compactons [45].
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APPENDIX A: THE STURM-LIOUVILLE
PROBLEM

It is convenient to transform the fluctuation equation into
the form of a SL problem on a segment ½0; R�, where R is

finite (for compact solitons) or R ¼ ∞ for usual infinitely
extended solitons. There are two standard forms for the SL
problem.
(1) The canonical form

−
d
dr

�
pðrÞ dη

dr

�
þ qðrÞη ¼ λsðrÞη: ðA1Þ

For the fluctuation equation of the BPS Skyrme
model we thus have

pðrÞ ¼ sðrÞ ¼ 1

r2
; qðrÞ ¼ 2r2

B2l6
Uχχ

���� ðA2Þ

and λ ¼ ω2.
(2) The normal form

−
d2u
dx2

þQðxÞu ¼ λu: ðA3Þ

The transition from the canonical form to the normal
form is given by

x ¼
Z ffiffiffiffiffiffiffiffiffi

sðrÞ
pðrÞ

s
dr ðA4Þ

uðxÞ ¼ fðxÞηðrðxÞÞ; fðxÞ ¼
ffiffiffi
4

p
pðrðxÞÞsðrðxÞÞ

ðA5Þ

and the potential

Q ¼ qðrðxÞÞ
sðrðxÞÞ þ

f00

f
: ðA6Þ

Hence, for the BPS Skyrme model case

r ¼ x; ðA7Þ

fðxÞ ¼ 1

x
; uðxÞ ¼ 1

x
ηðxÞ; ðA8Þ

Q ¼ 2

x2
þ 2x4

B2l6
Uχχ j: ðA9Þ

This is the effective potential of the related SL
problem.

APPENDIX B: RESONANCE MODES

Our starting point is the complexified version of
the linear fluctuation equation in normal form (see
Appendix A),

ψ tt − ψxx þQðxÞψ ¼ 0; ðB1Þ
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where ψ is the complex linear fluctuation field, and Q is
the effective potential. Resonance modes, also known as
quasinormal modes, play an important role in the long time
evolution of the system. Their origin is purely linear, so
very often Green function techniques are applied in this
context. Contrary to the bound or oscillational modes, the
resonance modes decay in time even in the linearized
problem. In principle, they can be characterized by a
complex frequency ω ¼ Ωþ iΓ where Ω and Γ are real.
Therefore, the time evolution has the form

ψðx; tÞ ≈ eiωtϕðxÞ ¼ e−ΓteiΩtϕðxÞ: ðB2Þ

The characteristic time T1=2 ¼ ln 2=Γ is called half-life.
The valuesΩ, Γ and the spatial profile ϕðxÞ are obtained by
solving Eq. (B1) with the purely outgoing wave condition
ϕðxÞ ∼ e−ikx as x → ∞, where k is a wave number where,
for a massless field [i.e., in our case, for an effective
potential QðxÞ that decays sufficiently fast for x → ∞],
k ¼ ω. Some important physical applications of quasinor-
mal modes are radioactivity and gravitational waves after
black-hole collisions.
We recall some basic properties of resonance modes after

Kokkotas [46]. For the problem of solving Eq. (B1) with
Cauchy initial data ψðx; 0Þ;ψ tðx; 0Þ, it is best to apply the
Laplace transform technique,

ψ̂ðx; sÞ ¼
Z

∞

0

e−stψðx; tÞdt; ðB3Þ

solve the appropriate inhomogeneous equation

s2ψ̂ − ψ̂xx þQψ̂ ¼ sψðx; 0Þ þ ψ tðx; 0Þ; ðB4Þ

and apply the inverse Laplace transform,

ψðx; tÞ ¼ 1

2πi

Z
∞

−∞
eðaþisÞtψ̂ðx; aþ isÞds: ðB5Þ

The real value a is chosen in such a way that the real parts
of all the poles of the integrand are less than a. For solving
the inhomogeneous equation, the Green function can be
used,

ψ̂ðx; sÞ ¼
Z

∞

−∞
Gðx; x0; sÞjðs; x0Þdx0: ðB6Þ

It can be written as

Gðx; x0; sÞ ¼ 1

WðsÞ
�
η1ðx0; sÞη2ðx; sÞ x0 < x

η1ðx; sÞη2ðx0; sÞ x0 > x;
ðB7Þ

where η1;2 are solutions of the homogeneous equation.
We choose the Green function that gives bounded solutions
for compact initial data. The quasinormal modes are those

solutions for which the Green function has a pole for
jxj → ∞. This means that the Wronskian vanishes, and the
two solutions η1 and η2 become linearly dependent. As a
result, after applying the inverse Laplace transform for
large t, we obtain a sum over all poles of the Green
function,

ψðx; tÞ ¼
X
n

eiðΩnþiΓnÞtϕnðxÞ: ðB8Þ

After a sufficiently long time, only the resonance with the
smallest Γ remains. For massive fields, just like for the
double sine-Gordon case, one should use a dispersion
relation ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. This results in the appearance of

poles at ω ¼ �im and an additional contribution in the
form eimt=

ffiffi
t

p
[47].

Physically, one can use only real frequencies. The
resonances manifest themselves as especially long lived
and much more localized states, compared to other scatter-
ing states. This feature can be used to localize the real
parts of the resonant frequencies for narrow and, hence, the
most important resonances. Another important feature of a
resonance is that it appears as a peak in the scattering cross
section. For one channel scattering in three dimensions, the
lth partial cross section is defined as

σl ¼ 4π

k2
ð2lþ 1Þ sin2 δl; ðB9Þ

where the phase shift δl can be read out from the
asymptotic form of the regular solution

ϕðxÞ ∼ Al sinðkx − lπ=2þ δlÞ: ðB10Þ

In our case l ¼ 0. In the vicinity of a resonant frequencyΩ,
the cross section can be written as

σlðωÞ ≈
4π

k2
ð2lþ 1Þ Γ2=4

ðω −ΩÞ2 þ Γ2=4
: ðB11Þ

Finding an exact resonance numerically can be a difficult
task. The most straightforward method of finding a solution
that satisfies the purely outgoing wave condition can be
used only for relatively small values of Γ. The profile of
the resonance is a superposition of outgoing and ingoing
wave ϕðxÞ ¼ Aeikx þ Be−ikx and, with complex values of
k, one wave decreases exponentially and the other grows
exponentially. Finding the exact values of A and B becomes
an extremely difficult task. There exist some techniques
that can improve the method by changing variables,
hyperbolic foliations, or decomposing into phase and
amplitude. Other techniques include the WKB approxima-
tion, matching to some known potentials, or simulating the
linear evolution and fitting the values to obtained data
(Prony’s method). Most of the methods have their
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limitations. Generally, it is easier to find a single resonance
with small (but not too small) Γ. For problems with a large
number of wide resonances, most methods fail.

1. Direct solution

We have found that the direct method of solving the
linear equation to find the resonance mode can be applied
only in the limiting case of very small Γ. We applied this
method for resonances lying below ωmax. We have found
that in order to obtain more or less 1% precision, one can
find the resonances for ΓL < 7, where L is the distance at
which the potential Q becomes insignificant (depending
on the value of the parameter a, but usually one should
use L≃ 10…1000).

2. Linear evolution

Sometimes it is easier to perform a simulation of the
linear equation (B1). If there is a single mode or a most
dominating one, it is easy to find its frequency and damping
coefficient analyzing the evolution. After some time, the
resonance modes would be visible in the evolution
ψðx; tÞ ∼ e−ΓteiΩt. By fitting to the numerical data one
can extract quite accurately the parameters describing the
resonance. This method can be generalized to a larger
number of resonances (Prony’s method [48]). The evolu-
tion of the linearized equation is not contaminated by the
nonlinear coupling (increasing the process of decay of the
resonance mode) or by the interaction between modes or
nonlinear tails.
In order to decrease the fitting errors we multiplied the

results by eΓ0t where Γ0 is, in principle, arbitrary but best
when slightly less than the sought for Γ.
However, there is still a problem with the mass threshold,

which vanishes slower than the typical resonance. Usually,
in the evolution we see some short perturbation dependent
evolution, next, for intermediate time, the most narrow
resonance and then the mass threshold ξðx; tÞ ∼ eimt=

ffiffi
t

p
.

Sometimes the intermediate time is too short to fit the
resonance. However, for the linearized equation we can add
a constant term to the potential and hence change the mass
threshold, in particular, to set the mass to 0.

ψ̈ − ψ 00 þ ðQðxÞ −m2Þψ ¼ 0: ðB12Þ

With the above equation it is very easy to find a resonance
if there is only a single mode or a very dominating one. The
measured frequencies ~ω2 can be used to obtain the non-
shifted frequency of the quasimode: ω2 ¼ ~ω2 þm2.

3. Foliation

Instead of studying the solution along t ¼ const time
slices, it is somewhat better to introduce a new timelike
variable [49,50],

τ ¼ t − hðxÞ; τ → jxj as jxj → ∞: ðB13Þ

The function hðxÞ defines a new foliation of space-time,
typically hðxÞ ¼ jxj (zero foliation) or hðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ x2

p
(hyperbolic foliation). The solution describing the reso-
nance mode can now be written as

ψðx; τÞ ≈ eiωτðAine2iωx þ AoutÞ: ðB14Þ

This means that now we look for a solution that tends to a
constant value as x → ∞. The new coordinates trace the
solution along with the characteristics of the outgoing
wave. In a sense the outgoing wave is frozen. As long as Ain
is not negligible, the solution suffers the same errors as
previously, but when we find a solution with Ain ¼ 0,
we have a solution for which our method provides an
accuracy ϵm. This is equivalent to finding a soliton with
vanishing derivative at spatial infinity and is very similar
to finding bound states. Introducing the new function
ψðxÞ ¼ eiωhðxÞϕðxÞ we obtain the following equation:

−ϕ00 − 2iωh0ϕ0 þ ω2ðh02 − 1Þϕ − iωh00ϕþQϕ ¼ 0:

ðB15Þ

Unfortunately, for long range potentials ∼1=x2 even zero or
hyperbolic foliations are not enough. It is true that the
solutions tend to a constant plus an exponent that we want
to get rid of, but the rate with which the solution tends to
this asymptotics makes it sometimes difficult to treat it
numerically with high accuracy. Even far away from the
potential center, the solution still oscillates. Such oscilla-
tions are very difficult to deal with using high accuracy
spectral methods, which are excellent, but for smooth,
nonoscillatory functions. To avoid this behavior, we have
decided to use the different function hðxÞ, which more
suitably treats those oscillations. We assume that for almost
flat, but nonzero potentials, the solution can be approxi-
mated as ψ ≈ Aeikx þ Be−ikx, where k2 ¼ ω2 −QðxÞ. On a
short interval we can assume ωh ¼ ik, so we can choose
h0ðxÞ ¼ k=ω, or hðxÞ ¼ kx=ω. We have chosen the first
case so

hðxÞ ¼
Z

x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Qðx0Þ
ω2

r
dx0: ðB16Þ

If ω > QðxÞ the function hðxÞ defines a new foliation;
however when ω < QðxÞ, the function h0 becomes imagi-
nary, so formally it is not a true foliation. It still provides an
excellent tool for studying resonances, and we would refer
to this approach as a WKB foliation, pointing out its
resemblance both to the WKB approximation and the
foliations described above. The equation now takes the
form
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−ϕ00 − 2ikϕ0 þ iQ0ϕ
2k

¼ 0: ðB17Þ

We have obtained the solution solving directly the above
equation for the double sine-Gordon case ϵ ¼ −1=4 with
boundary conditions ϕð0Þ ¼ 0 and ϕð∞Þ ¼ 1. The solu-
tion is shown in Fig. 18.
The potential QðxÞ for the BPS case (and all potentials

for higher than one dimension) have a singularity at the
origin. There are two independent solutions: regular
ψðxÞ ≈ x2 and singular ψðxÞ ≈ x−1. For singular potentials,
we have decided to find the solution piecewise. For
x ∈ ½0; xm� we used ordinary Chebyshev polynomials (with
linear map ½−1; 1� → ½0; xm�) and solved the standard
linear problem for ψðxÞ with conditions ψð0Þ ¼ 0 and
ψðxmÞ ¼ 1. Next we solved the equation using the rational
Chebyshev method with conditions ϕð∞Þ ¼ ϕðxmÞ ¼ 1.
The first solution was multiplied by eiðhðxÞ−hðxmÞÞ to match
the second solution. The matching function gðωÞ ¼
ϕðx−mÞ − ϕðxþmÞ vanishes when the functions can be
smoothly matched. The result is shown in plot 19. For

FIG. 19. Comparison between the solution in WKB foliation (left) and in the standard t ¼ const time sheet (right). BPS model,
a ¼ 1.7, ω ¼ 3.4916þ 0.0364i.

FIG. 18. A resonance mode found for massless double sine-
Gordon ϵ ¼ −1=4 for frequency 1.2665þ 0.4440i in WKB
foliation using the rational Chebyshev spectral method for
semi-infinite interval x ∈ ½0;∞�. The frequency is very close
to the frequency found using the linear simulation method. Note
that the solution tends to 1 as x grows to infinity without any
oscillations.

FIG. 20. Comparison between different stages of a single mode as a changes and Γ grows rapidly for the resonances formed from the
first (left) and second (right) bound mode for a ¼ 1. The solid line is the real part of ψðxÞ, and the dashed line is the imaginary part. The
profiles with smaller Γ are more localized. Profiles in WKB foliation are normalized as ψðx → ∞Þ → 1.
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comparison, we have shown the resonance profile in the
original t ¼ const time slice. Note that the solution
obtained from our method is almost constant for large
values of x and hence much better treated numerically.
Using this technique, we have also compared the profiles
for the first two resonances for different values of the
parameter a, Fig. 20.

APPENDIX C: SKYRMION RADIATION

Let us now consider the problem of radiation escaping
from the surface of the Skyrmion. As a starting point, we
consider the case a ¼ 1. The equation of motion is linear,
so there is no interaction among modes or between modes
and the static solution. The Skyrmion is a static solution
satisfying the appropriate boundary conditions. This is a
remarkable feature. Usually, the small perturbation scatters
on the background static solution. In this case, the
perturbation does not feel the field of the Skyrmion.
However, by choosing the appropriate symmetry for our
ansatz, we have broken the symmetry. The effective
potential of the Sturm-Liouville problem

QðrÞ ¼ 2

r2
þ 2r4

B2l6
ðC1Þ

and, in particular, the presence of the baryon number B in
the second term, is a remnant of the symmetry breaking and
the geometry of our ansatz. The first term, 2=r2, corre-
sponds to the dimensionality of physical space. The
effective potentialQðrÞ grows to∞ as r → ∞ and confines
the radiation. For each frequency there is a limit RcritðωÞ
to which the radiation can propagate, defined by the
relation QðRcritÞ ¼ ω2. Here, Rcrit is the second root of
this equation, which for large amplitudes and B2l6 ¼ 2 can
be approximated by

Rcrit ≃ ffiffiffiffi
ω

p
: ðC2Þ

Examples of ranges Rcrit and wave profiles are shown in
Fig. 21.
For large frequencies one can think of the perturbation

as a massive field propagating with the effective mass
meff ¼ 2r2=ðBl3Þ. Note that this mass grows as r increases,
so this approximation can be valid only for fast changing
waves with large frequency (WKB approximation). There
always exists some critical radius, say Rcrit, abovewhich the
wave cannot propagate any longer. Very similar conclu-
sions can be drawn from the Sturm-Liouville approach. The
linearized equation is equivalent to a wave propagating
in the unbounded potential QðrÞ. Because the potential is
unbounded, the wave can propagate only inside a certain
sphere. Outside this sphere, only exponentially decaying
tails can be found. The higher the frequency the further the
wave can penetrate. For the wave packet it appears as if the
radiation slows down at some distance and increases its

wave number. An example for the evolution with oscillat-
ing boundary condition (ω ¼ 6) is presented in Fig. 22. For
this frequency, Rcrit ≃ 2. Clearly the wave propagates to
this distance. Next the amplitude of the wave drops
exponentially. Beyond that point only higher frequencies
can propagate. Since the wave has a wave front, it consists
of all frequencies, not only of the dominating one (ω ¼ 6).
The higher the frequency the further the wave propagates.

1. Perturbation series

Let us now consider how the waves evolve around
the static Skyrmion solution for a ≠ 1. We assume that
the deviation ϵ ¼ a − 1 from a ¼ 1 is small. We apply the
perturbation series with ϵ as the expansion parameter. Let
us assume that we know a solution describing radiation in
the case a ¼ 1, which we denote as ~χðr; tÞ.
The solution for ϵ ≠ 0 can be written as

χ ¼ χð0Þ þ ϵχð1Þ þ � � � ; ðC3Þ

where χð0Þðr; tÞ ¼ χ0ðrÞ þ A~χðr; tÞ. Note that in the non-
compacton case we can always find an A such that
χð0Þðr; tÞ > 0. We also expand the derivative of the potential,

U ;χ ¼ 2aχ2a−1 ¼ Uð0Þ
;χ þ ϵUð1Þ

;χ ; ðC4Þ

where

Uð0Þ
;χ ¼ 2χ ðC5Þ

is the potential for the linear case a ¼ 1 and

Uð1Þ
;χ ¼ 2χ þ 4χ ln χ: ðC6Þ

In all orders of the perturbation series the equation takes
the form

FIG. 21. Monochromatic wave ranges for scattering in the
effective potential QðrÞ for the case a ¼ 1.
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∂ttχ
ðnÞ − ∂rrχ

ðnÞ þ 2

r
∂rχ

ðnÞ þ 2r4

B2l6
χðnÞ

þ gðnÞðχðn−1Þ; χðn−2Þ;…χð0ÞÞ ¼ 0: ðC7Þ

In the zeroth order gð0Þ ¼ 0, so the solution is the solution to
the linearized equation. In the first order of the perturbation
series, the inhomogeneous part is

gð1Þðχð0ÞÞ ¼ 2χð0Þ þ 4χð0Þ lnðχð0ÞÞ: ðC8Þ

For the noncompacton case and A ¼ 0,

lnðχð0ÞÞ ¼ 1

ϵ
ln

�
π

2

�
1 −

r3

R3

�	
;

R3 ¼ 3Bl3

2ϵ

�
π

2

�
ϵ

: ðC9Þ

Note that lnðχð0ÞÞ ¼ lnðπ=2Þ=ϵþOðϵ0Þ. This term lowers
the order of the equation, which means that the perturbation
series written in such a way is inconsistent. This is something
we have actually expected since the Skyrmion profile for
a > 1 has a powerlike behavior while the linear equation
(a ¼ 1) gives either an exponential approach or none (static

solution, the linear equation has a superposition rule). The
waves have significantly different properties in the a ¼ 1
and a > 1 cases. The a ¼ 1 wave can be decomposed as a
linear combination of bound modes, each of them vanishing
at spatial infinity. The a > 1 waves behave similarly for
small values of r; however, for large values of r, beyond the
barrier they can move freely. For a ¼ 1 the spectrum is
discrete and for a > 1 it is continuous. For ϵ < 0 and a < 1,
the static solution is a localized compacton with radius R.
For r < R, we can use the same argument about the
inconsistency of the perturbation series. Inside the compac-
ton, the perturbation evolves obeying an appropriate linear-
ized equation. If the perturbation vanishes at the surface,
there is no need to consider any radiation outside the
compacton. The whole perturbation can be decomposed
as a linear combination of the infinite but discrete spectrum
of bound modes. However, if the perturbation does not
vanish at the surface of the compacton, it can escape the
Skyrmion. For r > R, χ0ðrÞ ¼ 0, which is consistent with
the case of the linear static solution for a ¼ 1. This is the
only case when our perturbation series can be valid. χð0Þ can
now be chosen as the solution describing a wave that
propagates up to a certain critical distance Rcrit. Because
χð1Þ obeys the same equation with the additional source term

FIG. 22. Linear evolution of the perturbed Skyrmion for a ¼ 1, with oscillating boundary conditions with the frequency ω ¼ 6. For
this frequency Rcrit ≃ 2.
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gð1Þðχð0ÞÞ, it has similar properties and cannot propagate to
further distances. Thus, χð1Þ is indeed a small correction to
χð0Þ. Note that it may happen that low frequencies cannot
propagate outside the compacton if Rcrit < R. Please note the
similarity between the linear evolution of Fig. 22 and the
evolution outside the compacton (see, e.g., Fig. 16).
The above considerations can be summarized as follows.
(i) For the case a > 1, the waves are asymptotically

free. When they cross the barrier they can move to
infinity. The barrier’s shape chooses certain frequen-
cies that fit well inside the barrier forming quasi-
normal modes.

(ii) For a ¼ 1, the waves can propagate only up to a
certain distance. The higher the frequency the further
the wave can reach. Beyond the critical value
r ¼ Rcrit ≃ ffiffiffiffi

ω
p

, the wave can no longer propagate.

(iii) For compactons a < 1, the wave propagating in-
side the Skyrmion moves as the standard lineari-
zation method tells. However, if the radiation
leaves the compacton, its evolution is less trivial.
The propagation is described by a nonlinear
equation. But for small deviations from a ¼ 1,
the wave can be treated perturbatively. The most
important feature that remains from the a ¼ 1 case
is that the wave is trapped inside some critical
radius Rcrit.

We remark that videos of the time evolution of perturbed
compactons (for a ¼ 0.55 and a ¼ 0.95) and of the
perturbed linear model (a ¼ 1) have been added as
Supplemental Material [51]. The features described here
can be clearly seen in the videos, and we urge the reader to
view them.
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