56 research outputs found

    Assessing latin@ public opinion on foreign affairs and its potential impact on the 2012 presidential election

    Get PDF
    As the Latin@ population of the United States grows and the “Sleeping Giant” is expected to play a more significant role in the nation’s elections and governance more attention must be paid to the factors influencing Latin@ public opinion and political behavior on a myriad of issues. While there is a growing literature addressing Latin@ partisanship and opinion on issues such as morality and social welfare programs, there is a dearth of information regarding their opinion on foreign affairs and policy outside of Latin America. We review the limited studies that exist examining Latin@ opinion on policy issues and then explain why this can and will matter in Latin@ voting behavior and finally, using data from the 2006 Pew Hispanic Center survey on Latin@s and Religion in the U.S., we explain how such factors as religion, country of origin and ideology influence Latin@ public opinion on foreign affairs demonstrating a need for much greater study in this area.A medida que la población latina de los Estados Unidos crece, se espera que el "gigante dormido" desempeñe un papel más importante en las elecciones presidenciales y el gobierno debe prestar más atención a los factores que influyen en la opinión pública latina y el comportamiento político de una gran variedad de temas. Si bien existe una bibliografía cada vez mayor para abordar el partidismo latina y opinión acerca de asuntos tales como la moralidad y programas de bienestar social, hay una escasez de información acerca de su opinión sobre los asuntos exteriores y la política exterior de América Latina. Examinamos los estudios limitados que existen en el examen de la opinión latina en temas de política y para luego explicar por qué esto puede y será importante en el comportamiento del voto latino y, por último, utilizando los datos de la encuesta de 2006 del Pew Hispanic Center sobre los latinos y la religión en los EE.UU., se explica cómo tales factores como la religión, país de origen y la ideología influyen en la opinión pública hispana en asuntos exteriores que demuestren una necesidad de un estudio mucho mayor en este área

    Flexible Bifunctional Electrode for Alkaline Water Splitting with Long-Term Stability

    Get PDF
    Progress in electrochemical water-splitting devices as future renewable and clean energy systems requires the development of electrodes composed of efficient and earth-abundant bifunctional electrocatalysts. This study reveals a novel flexible and bifunctional electrode (NiO@CNTR) by hybridizing macroscopically assembled carbon nanotube ribbons (CNTRs) and atmospheric plasma-synthesized NiO quantum dots (QDs) with varied loadings to demonstrate bifunctional electrocatalytic activity for stable and efficient overall water-splitting (OWS) applications. Comparative studies on the effect of different electrolytes, e.g., acid and alkaline, reveal a strong preference for alkaline electrolytes for the developed NiO@CNTR electrode, suggesting its bifunctionality for both HER and OER activities. Our proposed NiO@CNTR electrode demonstrates significantly enhanced overall catalytic performance in a two-electrode alkaline electrolyzer cell configuration by assembling the same electrode materials as both the anode and the cathode, with a remarkable long-standing stability retaining ∼100% of the initial current after a 100 h long OWS run, which is attributed to the “synergistic coupling” between NiO QD catalysts and the CNTR matrix. Interestingly, the developed electrode exhibits a cell potential (E10) of only 1.81 V with significantly low NiO QD loading (83 μg/cm2) compared to other catalyst loading values reported in the literature. This study demonstrates a potential class of carbon-based electrodes with single-metal-based bifunctional catalysts that opens up a cost-effective and large-scale pathway for further development of catalysts and their loading engineering suitable for alkaline-based OWS applications and green hydrogen generation

    Anomalies in low-energy Gamma-Ray Burst spectra with the Fermi Gamma-Ray Burst Monitor

    Full text link
    A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the \textit{Fermi} era. We present a systematic and rigorous search for spectral deviations from a Band function at low energies in a sample of the first two years of high fluence, long bursts detected by the \textit{Fermi} Gamma-Ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2×105\times10^{-5} erg / cm2^{2} (10 - 1000 keV). An extrapolated fit method is used to search for low-energy spectral anomalies, whereby a Band function is fit above a variable low-energy threshold and then the best fit function is extrapolated to lower energy data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the instrument response. This method was employed for both time-integrated burst spectra and time-resolved bins defined by a signal to noise ratio of 25 σ\sigma and 50 σ\sigma. Significant deviations are evident in 3 bursts (GRB\,081215A, GRB\,090424 and GRB\,090902B) in the time-integrated sample (\sim 7%) and 5 bursts (GRB\,090323, GRB\,090424, GRB\,090820, GRB\,090902B and GRB\,090926A) in the time-resolved sample (\sim 11%).} The advantage of the systematic, blind search analysis is that it can demonstrate the requirement for an additional spectral component without any prior knowledge of the nature of that extra component. Deviations are found in a large fraction of high fluence GRBs; fainter GRBs may not have sufficient statistics for deviations to be found using this method

    A software tool to assess uncertainty in transient storage model parameters using Monte Carlo simulations

    Get PDF
    Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes

    The Fermi GBM Gamma-Ray Burst Spectral Catalog: The First Two Years

    Full text link
    We present systematic spectral analyses of GRBs detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).Comment: 43 pages, 24 Figures, accepted to ApJ Supplements; http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.htm

    Selective phase growth and precise-layer control in MoTe2

    Get PDF
    Minor structural changes in transition metal dichalcogenides can have dramatic effects on their electronic properties. This makes the quest for key parameters that enable a selective choice between the competing metallic and semiconducting phases in the 2D MoTe2 system compelling. Herein, we report the optimal conditions at which the choice of the initial seed layer dictates the type of crystal structure of atomically-thin MoTe2 films grown by chemical vapour deposition (CVD). When Mo metal is used as a seed layer, semiconducting 2H-MoTe2 is the only product. Conversely, MoO3 leads to the preferential growth of metallic 1T-MoTe2. The control over phase growth allows for simultaneous deposition of both 2H-MoTe2 and 1T '-MoTe2 phases on a single substrate during one CVD reaction. Furthermore, Rhodamine 6G dye can be detected using few-layered 1T '-MoTe2 films down to 5 nM concentration, demonstrating surface enhanced Raman spectroscopy (SERS) with sensitivity several orders of magnitude higher than for bulk 1T '-MoTe2
    corecore