28 research outputs found

    Adaptive responses of animals to climate change are most likely insufficient

    Get PDF
    Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species

    Weak Effects of Geolocators on Small Birds: A Meta-analysis Controlled for Phylogeny and Publication Bias

    Get PDF
    Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.Grantova Agentura Ceske Republiky 13-06451SInstitut Polaire Francais Paul Emile Victor IPEV-1036Institutional Research Plan RVO: 68081766Leverhulme Trust RPG-2013288Russian Foundation for Basic Research Arctic-18-05-60261Russian Science Foundation 17-14-0114

    Effects of turbulence on the feeding rate of a pelagic predator : the planktonic hydroid Clytia gracilis

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 333 (2006): 159-165, doi:10.1016/j.jembe.2005.12.006.Relatively little is known about the role of turbulence in a predator - prey system where the predator is a passive, pelagic forager. The Campanulariid hydroid Clytia gracilis (Cnidaria, Hydrozoa) is unusual because it occurs as planktonic colonies and is reported to forage passively in the water column on Georges Bank, Massachusetts, USA. In this study we investigated the role of various turbulence conditions on the feeding rate of C. gracilis colonies in laboratory experiments. We found a positive relationship between turbulence velocities and feeding rates up to a turbulent energy dissipation rate of ca 1 cm2 s-3. Beyond this threshold feeding rate decreased slightly, indicating a dome-shaped relationship. Additionally, a negative relationship was found between feeding efficiency and hydroid colony size under lower turbulent velocities, but this trend was not significant under higher turbulence regimes.P. Adamík received support from the WHOI Academic Programs Office via the 2002 Summer Student Fellowship and while writing this paper from the Ministry of Education of the Czech Republic (MSM 6198959212 and MSM 153100012)

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro- ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young

    Structure of the Breeding Bird Assemblage of A Natural Beech-Spruce Forest in the Ć ĂștovskĂĄ Dolina National Nature Reserve, the MalĂĄ Fatra Mts

    No full text
    Korƈan M., AdamĂ­k P.: Structure of the breeding bird assemblage of a natural beech-spruce forest in the Ć ĂștovskĂĄ dolina National Nature Reserve, the MalĂĄ Fatra Mts. EkolĂłgia (Bratislava), Vol. 33, No. 2, p. 138-150, 2014

    Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird

    No full text
    Abstract Background Adjusting the timing of annual events to gradual changes in environmental conditions is necessary for population viability. However, adaptations to weather extremes are poorly documented in migratory species. Due to their vast seasonal movements, long-distance migrants face unique challenges in responding to changes as they rely on an endogenous circannual rhythm to cue the timing of their migration. Furthermore, the exact mechanisms that explain how environmental factors shape the migration schedules of long-distance migrants are often unknown. Results Here we show that long-distance migrating semi-collared flycatchers Ficedula semitorquata delayed the last phase of their spring migration and the population suffered low return rates to breeding sites while enduring a severe cold spell en route. We found that the onset of spring migration in Africa and the timing of Sahara crossing were consistent between early and late springs while the arrival at the breeding site depended on spring phenology at stopover areas in each particular year. Conclusion Understanding how environmental stimuli and endogenous circannual rhythms interact can improve predictions of the consequences of climate changes on migratory animals

    Temporal variability in selected breeding parameters of the red-backed shrike.

    No full text
    <p>Data across four sites in the Czech Republic during the period 1965–2006 were modelled by generalized additive mixed models (GAMMs) including year as a fixed continuous explanatory variable and the site as a random effect. The fitted smooth functions (“<i>s(covariate, edf)</i>” in the title of y axis) of the effect of year indicate its effect size with its 95% confidence intervals. Smoothing terms for the effect of year on a) mean hatching date: edf = 1, t = −3.12, p = 0.0033; b) standardized differential for hatching date (SD<sub>HD</sub>): edf = 1, t = 0.16, p = 0.87; c) mean cumulated total of degree days at hatching date with temperature threshold 0°C (mean CDD<sub>HD</sub>): edf = 1, t = 2.22, p = 0.032, similarly mean May temperature (T<sub>MAY</sub>) which is not shown; and d) standardized seasonal linear trend in daily mortality rate (trendDMR): edf = 1, t = 0.16, p = 0.87). Points are the partial residuals of the response (i.e. Pearson residuals added to the smooth term). The coincidence of the line of the estimated effect and its confidence intervals at the point where the line passes through zero for smooth terms with one degree of freedom is the result of the identifiability constraint applied for the smooth term (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043944#pone.0043944-Arnold1" target="_blank">[62]</a> for details). Site A: full circles, site B: full triangles, site C: empty circles and site D: empty triangles. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043944#pone.0043944.s001" target="_blank">Fig. S1</a> for site-specific trends and values on the original scales.</p
    corecore