106 research outputs found
A Review of Business Models for Shared Mobility and Mobility-as-a-Service (MaaS):A Research Report
The mobility solutions that currently dominate the mobility market have raised global challenges. Specifically, mass car ownership has led to traffic congestion, shortage of parking spaces, and sustainability issues. Recently, mobility solutions driven by technological advancements have emerged to address these issues via more efficient and sustainable use of resources. However, the wide range of mobility offerings has led to a scattered mobility market, and oversight is hard to grasp for travelers. Mobility-as-a-Service (MaaS) platforms aim to address this issue by integrating mobility services into a single platform. However, MaaS providers (operators) struggle to find sustainable business models. Additionally, research on shared mobility business models is limited, and there is little oversight in the scattered business model landscape. This report addresses this issue by summarizing the dominant business models in the mobility market through a systematic review of current initiatives and literature. It provides an overview of active MaaS business models and challenges and opportunities to integrate mobility services into MaaS. The types of mobility services reviewed in this study include bike-sharing, scooter-sharing, car-sharing, e-hailing, and MaaS platform providers. For each mobility service, the dominant operating mode and the main business model actors are identified and represented using the Service-Dominant Business Model Radar (SDBM/R). Furthermore, the value exchanges between the actors are mapped in Value Capture Diagrams. The report concludes with a discussion on the challenges and opportunities related to synthesizing shared mobility modes into MaaS and the expectations for its future
Ecosystem and Business Models of the UMOS-MobilitEU Mobility Service Platform
This report presents the findings of the detailed analysis of the current state of practice in the Mobility-as-a-Service (MaaS) landscape, and their reflection on the UMOS/MobilitEU MObility Service Platform business models and their viability. The deliverable provides input to the strategy of the platform as well as to its development. We present a summary of our findings, which are based on the existing literature and our discussions with various parties in the domain. We describe our reflection of these findings on how UMOS business models and relevant revenue channels should be shaped. We believe that the report provides important contributions not only to the UMOS/MobilitEU ecosystem - in terms of deriving the decisions for the operations of the platform, but also beyond to the general MaaS arena. The deliverable has direct influences on the commercialisation strategy in terms of depicting how the cost and benefits can be exchanged between parties and what revenue items and channels shall be activated for the UMOS platform.<br/
Trends in Underground Mining
In this document, we will talk through information collected on all trends in mining in the underground environment as much as what happens in the world as or new machinery America provides the highest mining production in underground mining. We often discover opportunities for improvement in both productivity and costs. Of all these methods, braking is not only the most common, but also offers the largest share of overall production, nearly 50 percent.
These underground mining methods are often determined by the deposits and the economics of mining and are therefore somewhat beyond the control of the operator(Trends in underground mining for gold and base metals | McKinsey, s. f.
Enhancing the mechanical performance of bleached hemp fibers reinforced polyamide 6 composites: a competitive alternative to commodity composites
Automotive and industrial design companies have profusely used commodity materials like glass fiber-reinforced polypropylene. These materials show advantageous ratios between cost and mechanical properties, but poor environmental yields. Natural fibers have been tested as replacements of glass fibers, obtaining noticeable tensile strengths, but being unable to reach the strength of glass fiber-reinforced composites. In this paper, polyamide 6 is proposed as a matrix for cellulosic fiber-based composites. A variety of fibers were tensile tested, in order to evaluate the creation of a strong interphase. The results show that, with a bleached hardwood fiber-reinforced polyamide 6 composite, it is possible to obtain tensile strengths higher than glass-fiber-reinforced polyolefin. The obtained composites show the existence of a strong interphase, allowing us to take advantage of the strengthening capabilities of such cellulosic reinforcements. These materials show advantageous mechanical properties, while being recyclable and partially renewable.Peer ReviewedPostprint (published version
Applications of Carboxylic Acids in Organic Synthesis, Nanotechnology and Polymers
Carboxylic acids are versatile organic compounds. In this chapter is presented a current overview of the use of carboxylic acids in a different area as organic synthesis, nanotechnology, and polymers. The application carboxylic acids in these areas are: obtaining of small molecules, macromolecules, synthetic or natural polymers, modification surface of nanoparticles metallic, modification surface of nanostructure such as carbon nanotubes and graphene, nanomaterials, medical field, pharmacy, etc. Carboxylic acids can be natural and synthetic, can be extracted or synthesized, presented chemical structure highly polar, active in organic reactions, as substitution, elimination, oxidation, coupling, etc. In nanotechnology, the use of acid carboxylic as surface modifiers to promote the dispersion and incorporation of metallic nanoparticles or carbon nanostructure, in the area of polymer carboxylic acids present applications such monomers, additives, catalysts, etc. The purpose of this chapter is to emphasize the importance of carboxylic acids in different areas, highlighting the area of organic synthesis, nanotechnology and polymers and its applications
Insights on Glucocorticoid Receptor Activity Modulation through the Binding of Rigid Steroids
Background: The glucocorticoid receptor (GR) is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. Methodology/Principal Findings: Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GRDNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2) coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. Conclusions/Significance: The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are considered essential steps in the receptor activation pathway, results presented here contribute to understand how specific ligands influence GR behavior. © 2010 Presman et al.Fil:Presman, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Alvarez, L.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:MartÃ, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Veleiro, A.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Burton, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pecci, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
- …