110 research outputs found

    Evaluation of internal reference genes for quantitative expression analysis by real-time reverse transcription-PCR in somatic cells from goat milk

    Get PDF
    Reverse transcription (RT) quantitative real-time PCR (qPCR) is the most accurate and easy-to-perform technique to measure the expression level of a selected gene of interest by quantifying mRNA transcripts. The use of reference genes is commonly accepted as the most reliable approach to normalize RT-qPCR data and reduce possible errors generated in the quantification of gene expression. The optimal number and choice of reference genes are experimentally validated for specific tissues or cell types and experimental designs. To date, data on qPCR normalization in goats are scarce and the most suitable reference genes in this species have been identified for only a limited number of tissues. The aim of this study was to determine an optimal combination of stably expressed reference genes in caprine milk somatic cells (MSC) from healthy and infected mammary glands. For the purpose, we performed RT-qPCR for 10 commonly used reference genes from various functional classes and then determined their expression level in MSC from goats intramammary challenged with Staphylococcus aureus and in MSC from healthy controls, with a view to select genes whose stability would be unaffected under infection conditions. The geNorm and NormFinder algorithms were used for validating the reference genes. Furthermore, to demonstrate the importance of normalization of gene expression with appropriate reference genes, we tested the effect of using a combination of the least stable genes for expression analysis evaluation. On the basis of our evaluation, we recommend the use of a panel of reference genes that should include G6PD, YWHAZ, and ACTB for caprine MSC gene expression profiling. The expression of the 2 genes of interest, pentraxin-related protein (PTX3) and secreted phosphoprotein 1 (SPP1), was evaluated by RT-qPCR in all samples collected pre- and postinfection, and the recommended reference genes were used to normalize the data. Our study provides a validated panel of optimal reference genes for the identification of genes differentially expressed by qRT-PCR in caprine MSC. Moreover, we provided a set of intron-spanning primer sequences that could be suitable for gene expression experiments using SYBR Green chemistry on other caprine tissues and cells

    The unusual isolation of carnobacteria in eyes of healthy salmonids in high‑mountain lakes

    Get PDF
    Carnobacteria are common bacteria in cold and temperate environments; they are also reported during fsh mortality events. In a previous study, carnobacteria were isolated from the eyes of healthy wild salmonids from a high-mountain lake. To better understand these fndings, salmonids were captured from three high-mountain lakes (Lower and Upper Balma Lake, Rouen Lake; northwest Italy) during August 2019 and subjected to bacteriological and histological examination. Although all were healthy, 8.7% (Lower Balma Lake), 24% (Upper Balma Lake), and 32.6% (Rouen Lake) were positive for carnobacteria colonization of the eyes. A Trojan-horse efect was hypothesized to explain carnobacteria isolation in the eye. This immune-escaping macrophage-mediated mechanism has been identifed in other Gram-positive bacteria. Biochemical, molecular, and phylogenetic analysis were carried out on isolated bacteria (Carnobacterium maltaromaticum and C. divergens). Based on previous references for carnobacteria isolated from fsh, C. maltaromaticum strains were tested for the pisA precursor gene of the bacteriocin piscicolin 126. Carnobacterium maltaromaticum strains were found to display genotypic heterogeneity and a low percentage of pisA positive amplifcation. Features of geomorphology, geographic isolation, and microbiota common to the three lakes are thought to be possibly related to our fndings. Moreover, terrestrial insects collected from the lake shoreline and the stomach contents were screened for the presence of carnobacteria. The salmonids in these high-mountain environments feed mainly on terrestrial insects, which are considered possible vectors for carnobacteria that might catabolize the exoskeleton chitin. All insects tested negative for carnobacteria, but as a small number of samples were analyzed, their role as possible vectors of infection cannot be excluded. Further studies are needed to corroborate our research hypothesis

    Use of pJANUSâ„¢-02-001 as a calibrator plasmid for Roundup Ready soybean event GTS-40-3-2 detection: an interlaboratory trial assessment

    Get PDF
    Owing to the labelling requirements of food and feed products containing materials derived from genetically modified organisms, quantitative detection methods have to be developed for this purpose, including the necessary certified reference materials and calibrator standards. To date, for most genetically modified organisms authorized in the European Union, certified reference materials derived from seed powders are being developed. Here, an assessment has been made on the feasibility of using plasmid DNA as an alternative calibrator for the quantitative detection of genetically modified organisms. For this, a dual-target plasmid, designated as pJANUS™-02-001, comprising part of a junction region of genetically modified soybean event GTS-40-3-2 and the endogenous soybean-specific lectin gene was constructed. The dynamic range, efficiency and limit of detection for the soybean event GTS-40-3-2 real-time quantitative polymerase chain reaction (Q-PCR) system described by Terry et al. (J AOAC Int 85(4):938–944, 2002) were shown to be similar for in house produced homozygous genomic DNA from leaf tissue of soybean event GTS-40-3-2 and for plasmid pJANUS™-02-001 DNA backgrounds. The performance of this real-time Q-PCR system using both types of DNA templates as calibrator standards in quantitative DNA analysis was further assessed in an interlaboratory trial. Statistical analysis and fuzzy-logic-based interpretation were performed on critical method parameters (as defined by the European Network of GMO Laboratories and the Community Reference Laboratory for GM Food and Feed guidelines) and demonstrated that the plasmid pJANUS™-02-001 DNA represents a valuable alternative to genomic DNA as a calibrator for the quantification of soybean event GTS-40-3-2 in food and feed products

    A multidisciplinary approach to estimating wolf population size for long-term conservation

    Get PDF
    The wolf (Canis lupus) is among the most controversial of wildlife species. Abundance estimates are required to inform public debate and policy decisions, but obtaining them at biologically relevant scales is challenging. We developed a system for comprehensive population estimation across the Italian alpine region (100,000 km2), involving 1513 trained operators representing 160 institutions. This extensive network allowed for coordinated genetic sample collection and landscape-level spatial capture–recapture analyses that transcended administrative boundaries to produce the first estimates of key parameters for wolf population status assessment. Wolf abundance was estimated at 952 individuals (95% credible interval 816–1120) and 135 reproductive units (i.e., packs) (95% credible interval 112–165). We also estimated that mature individuals accounted for 33–45% of the entire population. The monitoring effort was spatially estimated thereby overcoming an important limitation of citizen science data. This is an important approach for promoting wolf–human coexistence based on wolf abundance monitoring and an endorsement of large-scale harmonized conservation practices
    • …
    corecore