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Abstract

The wolf (Canis lupus) is among the most controversial of wildlife species. Abundance esti-
mates are required to inform public debate and policy decisions, but obtaining them at bio-
logically relevant scales is challenging. We developed a system for comprehensive popula-
tion estimation across the Italian alpine region (100,000 km2), involving 1513 trained oper-
ators representing 160 institutions. This extensive network allowed for coordinated genetic
sample collection and landscape-level spatial capture–recapture analyses that transcended
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administrative boundaries to produce the first estimates of key parameters for wolf popu-
lation status assessment. Wolf abundance was estimated at 952 individuals (95% credible
interval 816–1120) and 135 reproductive units (i.e., packs) (95% credible interval 112–165).
We also estimated that mature individuals accounted for 33–45% of the entire population.
The monitoring effort was spatially estimated thereby overcoming an important limitation
of citizen science data. This is an important approach for promoting wolf–human coexis-
tence based on wolf abundance monitoring and an endorsement of large-scale harmonized
conservation practices.
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capture–recapture

Una estrategia multidisciplinaria para la estimación del tamaño poblacional de los lobos
para la conservación a largo plazo
Resumen: El lobo (Canis lupus) está entre las especies de fauna más controversiales. Se
requieren estimaciones de abundancia para informar al debate público y las decisiones
políticas, pero es un reto obtenerlos en escalas con relevancia biológica. Desarrollamos un
sistema para la estimación completa de la población en la región alpina de Italia (100,000
km2), con la participación de 1,513 operadores entrenados que representan a 160 institu-
ciones. Esta red extensa permitió una colecta coordinada de muestras genéticas y análisis
de captura-recaptura espacial que trascendieron las fronteras administrativas para así pro-
ducir las primeras estimaciones de los parámetros clave para la evaluación del estado de
la población de los lobos. Se estimó la abundancia en 952 individuos (95% intervalo de
confianza 816–1120) y 135 unidades reproductivas (es decir, manadas) (95% intervalo de
confianza 112–165). También estimamos que los individuos maduros representaban el 33–
45% de toda la población. El esfuerzo de monitoreo se estimó espacialmente, por lo que
sobrepasó una limitación importante de la ciencia ciudadana. Esta estrategia es impor-
tante para promover la coexistencia entre lobos y humanos con base en el monitoreo de la
abundancia y el apoyo a las prácticas armonizadas de conservación a gran escala.

PALABRAS CLAVE

captura-recaptura espacial, carnívoros mayores, ciencia ciudadana, detección imperfecta, modelo poblacional,
monitoreo, muestreo genético
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INTRODUCTION

Quantifying abundance is fundamental for wildlife conservation
and management. Reliable information on wildlife population

size is key to management and harvest regulation decisions,
defining conservation status, and furthering understanding of
ecosystems functioning (Williams et al., 2002). However, pop-
ulation abundance continues to be challenging to estimate in
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nature (Waples & Feutry, 2022), especially when species are
elusive, vagile, and distributed over large areas (Blanc et al.,
2012). This is because population sampling is never complete,
making it necessary to use analytical methods that account
for imperfect detection when estimating population size (Kéry
et al., 2009). Important advances have been made in under-
standing imperfect detection in part due to the wealth of
capture–mark–recapture data generated by noninvasive genetic
sampling (NGS), whereby individual genotypes are identified
from DNA extracted from samples (e.g., scat, hair) left behind
in the environment (Schwartz et al., 2007). Large carnivore
monitoring programs have benefited from this approach by
combining noninvasive genotyping with estimations of popu-
lation size from capture–recapture models (Caniglia et al., 2012;
Cubaynes et al., 2010; Marucco et al., 2009). More recently,
spatial capture–recapture (SCR) approaches have been used to
estimate densities of elusive animals based on DNA sampling
(Kéry et al., 2011; Proffitt et al., 2015) and by accounting for
multiple sources of available information (Gopalaswamy et al.,
2012). An SCR approach was applied for the first time to
estimate wolf population densities in Spain and Scandinavia,
based on NGS data (Bischof, Milleret, et al., 2020; López-Bao
et al., 2018) and evaluation of the effects of group association
(Bischof, Dupont, et al., 2020).

The presence of large carnivores, especially wolves (Canis

lupus), is highly controversial, and assessment of their pro-
tection status or decisions about their management are often
accompanied by intense political and public debate (Chapron
& López-Bao, 2014). At the beginning of the 21st century,
wolf populations were mainly small and highly fragmented due
to centuries of persecution. Subsequently, multiple concerted
efforts to improve wolf conservation were initiated worldwide
(Boitani, 2003), and populations have increased across North
America and Europe (Chapron et al., 2014), so successfully
that some wolf populations have lost their protected status
(Carroll et al., 2020). Regardless of their status, wolf popula-
tions continue to be at the center of political debates (Darimont
et al., 2018), and this intense public scrutiny makes reliable
and up-to-date population size estimates highly sought after by
various government offices. Despite the recent methodological
advances mentioned above, estimating the size of wolf pop-
ulations is currently even more challenging due to the recent
spatial and numeric expansion of the species. Monitoring wolf
populations has become more costly and logistically demanding
because it requires investigations over large areas with mul-
tipolitical jurisdictions and processing of numerous samples
with harmonized protocols. In addition, the politically sensitive
nature and high public profile of wolf monitoring put pressure
on researchers and institutions to obtain accurate estimates reg-
ularly and over short periods, despite often limited available
resources.

We developed and implemented an integrated approach to
monitoring wolves in the Italian alpine region to develop a long-
term and evenly distributed coordinated network of specialized
operators for the systematic collection of data over an exten-
sive area highly fragmented by administrative boundaries and to
produce estimates of key population metrics with direct rele-

vance for conservation and management (e.g., wolf abundance
and density number of packs, proportion of mature individuals)
and uncertainty associated with these metrics. While citizen sci-
ence is useful in large-scale monitoring (Dance, 2022; Kosmala
et al., 2016), its reliability is often questioned (Conrad & Hilchey,
2011; Kalén et al., 2022). To overcome this problem, we trained
and coordinated a network of specialized operators to perform
NGS and simultaneously record search effort to control for
spatial and temporal variation in sampling intensity. Individual
genotypes obtained from the NGS were analyzed with novel
SCR models that controlled for spatial and individual variation
in detection probability to produce the first comprehensive esti-
mates of key parameters for wolf population status assessment
in the Italian alpine region.

METHODS

Sampling design of survey to control effort

Wolves have reestablished in the Western Alps by naturally
expanding from the Apennines in the 1990s (Fabbri et al., 2007)
and have been reconnected with the Dinaric wolf population in
the Eastern Alps since 2014 (Marucco et al., 2022). The wolf
historical presence index is described in Figure 1a for 2007–
2016. The spatial data in a 10 × 10-km grid are derived from
2 periods: 2007–2011 by Chapron et al. (2014) and 2012–2016
by Kaczensky et al. (2021). Wolf sporadic presence was assigned
a value of 1 and wolf permanent presence was assigned a value
of 3 in each period and in each cell. We summed the 2 grids
from the 2 periods to create an index of historical wolf presence
that ranged from 1 to 6 (Figure 1a). These data were used to
inform the modeling process (Appendix S1). Wolves are now
expanding across the entire Alps and toward foothills.

From 2020 to 2021, we conducted the first comprehensive
and coordinated wolf survey in the Italian alpine region to
lay the foundation for long-term wolf monitoring. Sampling
schemes and protocols were created with the goal of estimating
abundance (number of individuals and packs) and species dis-
tribution by searching for and collecting environmental DNA
left by wolves (scat, urine, hair). The presence of the species was
estimated across the entire region of approximately 100,000 km2

by systematically searching 10 × 10 km cells where signs of
presence had been found the previous year and by opportunis-
tically searching all other cells in the Alpine region (Figure 1b).
Systematic sampling was based on transects searched once a
month from October to April in areas where wolf packs have
been detected previously (intensive survey area) and transects
searched once every 2 months where only sporadic wolf occur-
rence had been reported (extensive survey areas) (Figure 1b).
No sampling was conducted during the breeding season (May–
June), and survey lengths were short, relative to the life history
of the species under study, to satisfy the SCR closed population
assumption (Dupont et al., 2019; Royle et al., 2014).

This sampling strategy required training and effective coor-
dination of a large network of operators available to travel
transects in the entire Alpine region. Twenty-six online and
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FIGURE 1 (a) Wolf historical presence index for each grid cell in the Italian Alps from 2007 to 2016 at a 10 × 10-km resolution (data from 2 documented
periods: Chapron et al. [2014] for 2007–2011 and Kaczensky et al. [2021] for 2012–2016), (b) wolf noninvasive genetic sampling in the same region (black lines,
search transects; light green, cells sampled only opportunistically [i.e., trained operators were present but no transects were established]; bright green, cells sampled
once every 2 months; dark green, cells sampled once every month), and (c) wolf noninvasive genetic samples collected in the winter of 2020–2021 (red) and
genotyped samples included in the spatial capture–recapture analysis (blue).
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practical training events were held during fall 2020. Overall,
1513 specifically trained operators from 160 institutions or
associations constituted the Wolf Network, which operated con-
tinuously and extensively throughout the region collecting data
with a dedicated mobile app and contributing to opportunistic
sampling and systematic surveys along predefined transects on
specific dates. The majority of operators (72%) were employ-
ees of institutions concerned with wildlife management, and
the remaining were trained volunteers. We quantified search
intensity and transect operator’s experience and used these
quantifications in the modeling framework to estimate detec-
tion probability (details in Appendix S1). From October 2020 to
April 2021, 1776 transects were searched in the area (Figure 1b),
for a total of 40,725 km, and there were 1–10 repetitions per
transect.

NGS and relatedness analyses

A total of 1918 noninvasive DNA samples collected from 2020
to 2021 were identified to species and individually genotyped.
Mitochondrial DNA was used to distinguish wolf samples from
other carnivores, including domestic dogs, following Marucco
et al. (2009). Wolf samples were individually genotyped and
sexed using laboratory-specific sets of 8–16 microsatellite loci.
Microsatellite data were checked for quality and potential allelic
dropout and false alleles. The detailed laboratory genetic meth-
ods are in Appendix S2. We evaluated pack pedigrees and
structure for paternal and maternal relationships with spatial
information and the programs CERVUS 3.0 (Kalinowski et al.,
2007) and ML-RELATE (Kalinowski et al., 2006) to test indi-
vidual relatedness to other individuals in the putative packs.
The relatedness analyses were conducted among individuals in
groups sampled within a 150-km radius (Caniglia et al., 2014) or
between adjacent areas. Hence, based on additional field data
(marking sites, camera traps, reproductive sites, information
on dead wolves, etc.), we tested the hypothesis that genotypes
belong to the same pack. In some areas, a relatedness analysis
was not conducted because of low numbers of detected indi-
viduals or because pack reconstruction was not possible—in
these cases, the genotype was set as undetermined (NA). The
relatedness analyses allowed us to assign genotypes to packs
and to the 3 social classes: reproductive individuals (i.e., the
breeding pair), offspring, and other (i.e., an unrelated immi-
grant in a pack, a disperser, or a solitary individual) (details in
Appendix S2).

SCR modeling and estimate of population size

We built a Bayesian SCR model (Efford, 2004, 2004; Royle &
Young, 2008) to estimate wolf population size and map density
from NGS data. An SCR model estimates the distribution of
individual activity centers (ACs) from repeated individual spa-
tial detections. The distribution of detected individual ACs over
the available habitat (S) can be modeled as an inhomogeneous
binomial point process (Illian et al., 2008; Zhang et al., 2022)

with intensity calculated as

Ih = e𝜷Xh , (1)

where Ih is the point process intensity in habitat grid cell h, Xh is
the vector of covariate values for habitat grid cell h, and β is the
vector of associated coefficients. In our analysis, S was defined as
the 5-km resolution grid covering the entire Italian alpine region
(Figure 1c) surrounded by a 30-km area that allowed for the
possibility that individuals with ACs outside the searched area
could be detected within it.

To model the spatial variation in wolf density across S, we
considered the additive and linear effect of the following 5
spatial covariates: 1, historical wolf presence (considering that
current wolf density is likely the result of the recolonization
history of the species [Figure 1a]); 2, percent forest cover; 3,
percent low natural vegetation; 4, percent bare rock; and 5,
human population density (considering that wolves often select
for forested habitat and bushlands and avoid bare rocks and
human disturbance) (Falcucci et al., 2013; Marucco & McIntire,
2010). A detailed description of each covariate is in Appendix
S1.

We implemented a reversible-jump Monte Carlo Markov
chain (RJMCMC) approach to select among the covariates
(Green, 1995; O’Hara & Sillanpää, 2009). Following this pro-
cedure, each regression coefficient was associated with a binary
indicator parameter (w) that determines the probability of
inclusion of each covariate and thus its importance:

Ih = ew𝜷Xh . (2)

To select the most important covariates, we estimated the
posterior inclusion probabilities (PIPs) for each coefficient in
isolation and the posterior model probabilities, which were
calculated for each possible combination of the covariates
considered.

We used data augmentation (Royle et al., 2013) to estimate
population size, whereby available but undetected individuals
were added to the data set of encounter histories and a Bernoulli
state variable zi was used to describe the state of individual i:
zi ∼ Bernoulli ψ , where ψ is the probability of an individual
from the augmented pool of individuals belonging to the popu-
lation. Population size (N) was then obtained by summing over

the vector z1∶M : N =
∑M

i = 1 zi , where M is the total number of
individuals considered in the augmented pool (M >> N).

We also modeled individual sex and social status:

sexi ∼ Bernoulli (ρ) ,

statusi ∼ categorical (𝛉sex) , (3)

where ρ is the proportion of males in the population and θ sex is
a sex-specific vector representing the proportion of individuals
in each social status category for each sex (

∑
𝛉sex = 1).
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Bischof, Dupont, et al. (2020) found that wolves form packs;
therefore, spatial association between individuals (i.e., aggrega-
tion and cohesion), if ignored, can lead to unreliable inferences.
However, results of the aforementioned study show that group
association only causes noticeable bias in density estimates in
extreme cases (i.e., when the population is configured into very
few groups of very large size and high levels of coordination in
the space use of group members). This was not the case in our
study population; groups (packs) consisted of 2–10 individuals.
The computational cost of accounting for grouping in the wolf
model (e.g., Emmet et al., 2021) would far outweigh its benefits
in our study, given the primary focus on density estimation.

To account for spatial variation in individual detection prob-
ability, we used the common half-normal function (Borchers
& Efford, 2008), where the probability for individual i to be
detected at detector j (pij) decreases as distance between that
individual’s AC si and detector j (dij) increases:

pi j = ṗ0i j
e

−di j
2

2𝜎2
i ,

with

logit
(

p0i j

)
= p0sexi statusi

+ 𝜷X j

and

𝜎i = 𝜎sexi statusi
, (4)

where p0sexi statusi
is the sex- and status-specific baseline detec-

tion probability, 𝜎sexi statusi
is the sex- and status-specific scale

parameter (Royle et al., 2013), X j is a vector of detector-specific
covariates, and 𝜷 is the vector of associated coefficients. We
considered the effects of the following 4 spatial covariates
explained spatial variation in p0: 1, transect length (total length
in kilometers of all transects searched during the sampling sea-
son); 2, transect operator’s experience, because we expected p0
to increase as the number of kilometers searched in increased
and as the training experience of the operator increased; 3,
snowfall (mean accumulated surface snow in the sampling sea-
son), because we expected the presence of snow to increase
the chances of detecting and collecting genetic material; and 4,
human population density, because we expected high detection
probabilities in high human population density areas, even if no
systematic transect was present. A detailed description of each
covariate is in Appendix S1.

For the detection model, we used a 5-km grid covering the
entire Italian Alps region and used grid cell centers to define
detector locations. Following Milleret et al. (2018), we divided
each detector grid cell into 25 subcells of 1 × 1 km and used
a partially aggregated binomial detection model. The encounter
frequency of individual i at each detector j (yij) was then modeled
as a binomial distribution with a maximum sample size (K) of 25:

yi j ∼ binomial
(

pi j zi , size j

)
. (5)

We used a single detection model for the collection of system-
atic and opportunistic samples. Instead of considering separate
observation models, we focused on modeling the variation in
baseline detection probability among detectors with multiple
covariates, and specifically covariates of the systematic search
effort. Under this model, we made the assumption that a wolf
sample can be collected opportunistically anywhere in the detec-
tor grid with a probability varying according to the presence of
snow and the local human population density and that the sys-
tematic search effort increases this probability to collect a wolf
sample according to the length of search track recorded and
experience of trackers.

We fitted the SCR model with package nimbleSCR 0.1.3
(Bischof, Turek, et al., 2020), NIMBLE 0.10.2 (de Valpine
et al., 2017), and R 4.1.3 (R Development Core Team, 2022).
We ran 4 chains of 50,000 iterations each and discarded the
first 10,000 samples as burn-in, resulting in a total of 160,000
Monte Carlo Markov chain (MCMC) samples per model to draw
inferences from. We assessed convergence based on the poten-
tial scale reduction value for all parameters and mixing of the
chains with trace plots (Brooks & Gelman, 1998). For map-
ping density and extracting abundance estimates, we thinned
the posterior samples by 10 and based the maps on 16,000
MCMC samples. All the details on the SCR models are in
Appendix S1.

RESULTS

Wolf presence data and NGS

In total, 5636 samples were collected (Figure 1c). After remov-
ing samples that failed initial quality checks, 1918 of these were
analyzed with microsatellites. Following removal of genotypes
suspected of having allelic dropouts or false alleles, we obtained
745 genotypes, of which 95% were from scat samples, 1% were
from hair and urine samples, and 4% were from saliva samples
(Figure 1c; Appendix S2). These 745 genotypes were associ-
ated with 449 different wolf individuals (222 females, 213 males,
14 NA), which represents the minimum number of individu-
als in the study area. The average recapture rate was 1.66 (SD
1.13) detections per individual and 1.73 (1.23) and 1.62 (1.05)
detections for females and males, respectively. We verified the
hypothesis that multilocus nuclear genotypes belonged to the
same pack based on the relatedness analysis and determined the
social status of individuals (Appendix S2).

Abundance and density of wolves in the Italian
alpine region

Mean wolf abundance for the entire study area during the
winter of 2020–2021 was estimated as 952 individuals (95%
credible interval [CrI] 816–1120) (Figure 2). Based on the loca-
tion of individual ACs predicted by the model, we estimated
that 684 (95% CrI 600–782) individuals belonged to the west-
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FIGURE 2 (a) Wolf density in the Italian alpine region estimated with the spatial capture–recapture model fitted to the noninvasive genetic data collected in
winter 2020–2021 and (b) spatial determinants of wolf density in the Italian alpine region (i.e., effects plots for wolf historical presence [WHP]): percentage of low
natural vegetation (herbaceous), human population density (human pop), and percentage of bare rock and sparse vegetation according to the best model based on
weights from reversible-jump Monte Carlo Markov chain (shading, credible intervals).

TABLE 1 Wolf abundance (mean and 95% credibility interval) in the eastern and western part of the Italian alpine region and reproductive status for the winter
of 2020–2021 as estimated by a spatial capture–recapture model (sex-specific abundances in Appendix S1).

Alpine region Reproductive individuals Offspring Other Total*

Eastern 70.1 (47–98) 169.4 (118–236) 29.0 (20–42) 268.4 (201–354)

Western 200.1 (169–236) 414.6 (339–507) 68.9 (53–88) 683.6 (600–782)

Total 270.2 (224–327) 583.9 (467–731) 97.9 (76–126) 952 (816–1120)

*Small deviations between the total estimate and the sum of abundance estimates from the constituent subregions may arise due to rounding.

ern and 268 (95% CrI 201–354) to the eastern part of the
population (Table 1). We estimated that between 24% and
34% of the population consisted of reproducing individuals,
55–67% were classified as offspring, and 8–13% were classi-
fied as others (Table 1). Because individual social status was
modeled as a categorical state variable, it was possible to esti-
mate the presence of 135 breeding units or packs (95% CrI

112–164). In addition to abundance estimates, the SCR model
was able to estimate determinants of spatial variation in wolf
density (Figure 2). The RJMCMC showed strong support for
the influence of the historical presence covariate with a PIP of
1.00; for the influence of low natural vegetation with a PIP of
0.97; and for the influence of human population density with
a PIP of 0.79. Percentage of bare rock (PIPbare rocks = 0.41)
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FIGURE 3 Scale parameter (σ) and baseline detection probability (p0) of the detection function by sex and social status (reproductive [RI], offspring, or other)
for wolves in the Italian alpine region in winter 2020–2021 as estimated by the spatial capture–recapture model fitted to the noninvasive genetic data (point, median;
shading, density plot; width, frequency; whiskers, quantiles).

TABLE 2 Model selection for the determinants of wolf density in the
Italian alpine region for winter 2020–2021.

Model Weighta

WHP + herbaceous + pop + rock 0.30

WHP + herbaceous + pop + forest 0.28

WHP + herbaceous + pop + rock + forest 0.14

WHP + herbaceous + forest 0.14

WHP + herbaceous + pop 0.10

WHP + herbaceous + rock + forest 0.02

Abbreviations: forest, percent forest cover; herbaceous, percent low natural vegetation;
pop, human population density; rock, percent bare rock; WHP, historical wolf presence.
aModel weights based on posterior model probabilities for the different covariate
combinations. Only models with weight >0.01 are shown.

and forest cover (PIPforest cover = 0.56) was less supported.
Based on the most likely model (Table 2), wolf density was
positively associated with the historical wolf presence covari-
ate (βLCIE = 0.64 [95% CrI 0.53–0.75]) and the percentage of
low natural vegetation (βlow vegetation = 2.28 [95% CrI 0.91–
3.65]) and negatively associated with human population density
(βhuman density = −0.79 [95% CrI −1.45 to −0.31]). The RJM-
CMC analysis also revealed that percent bare rock and percent
forest had correlated and opposite effects. The best model esti-
mated a negative effect of percent bare rock (βbare rocks = −0.91
[95% CrI −1.59 to −0.24]), and the second-best model
indicated that wolf density was positively associated with
percent forest instead (βfores = 0.73 [95% CrI 0.20–1.27])

From 45% to 60% (mean = 53%) of individuals estimated
by modeling were undetected by NGS. Baseline detection
probabilities (p0) of both sexes were higher for reproductive

individuals than for pups and others (Figure 3). Baseline detec-
tion probability also varied substantially across space (Figure 4;
Appendix S1). We detected a strong positive relationship with
search effort (βtransect length = 0.20 [95% CrI 0.16–0.26]) fol-
lowed by operator experience (βexperience = 0.13 [95% CrI
0.10–0.16]), average amount of snowfall (βsnow = 0.23 [95%
CrI 0.07–0.40]), and, to a lesser extent, the logarithm of
human population density (βlogpop = 0.06 [95% CrI −0.07 to
0.18]). Additionally, baseline detection probability was slightly
higher in the western part (βwest = 0.20 95% CrI [−0.08 to
0.49]), but this effect was not significant. Sex and social sta-
tus also had a pronounced effect on the scale parameter of
the detection function; the largest value was estimated for
male others (σmale other = 29.6 km [95% CrI 22.2–40.4]) and
the smallest for reproductive males (σreproductive male = 2.4 km
[95% CrI 2.1–2.8]). Female others also had large-scale param-
eters (σfemale other = 13.5 km [95% CrI 10.6–17.5]) compared
with reproductive females (σreproductive female = 3.7 km [95%
CrI 3.2–4.1]), but to a lesser extent than males. Finally,
both female and male pups had comparable scale parameters
(σfemale pup = 3.0 km [95% CrI 2.5–3.5] and σmale pup = 2.8 km
[95% CrI 2.3–3.4]).

DISCUSSION

Estimate of key parameters for wolf population
status assessment

Ours is the firstnsive estimation of wolf population size in the
entire Italian alpine region that took a systematic and inten-
sively coordinated NGS approach. This survey overcame the
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9 of 12 MARUCCO ET AL.

FIGURE 4 Spatial determinants of wolf baseline detection probability in the Italian alpine region in winter 2020–2021 as estimated by the spatial
capture–recapture model fitted to the noninvasive genetic data (shading, credible intervals).

challenges of relying on the cooperation of highly fragmented
administrative jurisdictions and sampling at a large scale. This
first comprehensive estimate of 816–1120 individuals is cru-
cial for wolf management and will serve as a robust baseline
for future changes in population trajectory. The SCR models
accounted for 2 important challenges associated with large-
scale population-level estimates: not all individuals present in a
study area are detected (Kéry & Schaub, 2012) and individuals
that reside primarily outside the surveyed area may be detected
within it (Bischof et al., 2016). On the western side of the Italian
Alps, the latter is especially important because the wolf popu-
lation is connected to the French Alps (Louvrier et al., 2018).
The SCR models were developed with the intent to relax the
geographic closure assumption typical of traditional CR mod-
els by explicitly allowing for movements of individuals around
their latent and estimated ACs (Royle et al., 2014). Thanks to
this explicit link between the estimated number of individuals
and geographic area (Efford, 2004), we were able to precisely
estimate the density for our region and define the population

size. We estimated that 45–60% (mean = 53%) of individuals
remained undetected during NGS. Hence, we confirmed that
minimum counts based on the number of genotypes are mis-
leading when used to reveal variation in abundance over space
and time, whereas SCR estimates that account for varying detec-
tion probability should be considered the baseline for future
population size monitoring. Finally, we obtained information at
a large scale (landscape and population level) and with a high
grain (local and individual level). This is rarely the case in eco-
logical studies, which, for logistical reasons, usually have to trade
one off for the other (grain vs. extent), 1989).

Our model also provided the first estimate of the num-
ber of reproductive units with credibility intervals, thanks to
the modeling of the individual social status as a categorical
state variable (Appendix S1). We estimated the presence of 135
packs (95% CrI 112–164), which represents the first population-
level estimate of wolf reproductive units with an associated
level of credibility worldwide. This metric is particularly rele-
vant for population management because the number of packs
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is considered biologically meaningful for the persistence of a
wolf population (Reinhardt et al., 2019) because the ecology of
the species is based on the social and territorial dynamics of
packs (Mech & Boitani, 2003). We also estimated that mature
individuals accounted for 33–45% of the population (i.e., num-
ber of reproductive individuals and other, excluding offspring).
The possibility of estimating the proportion of reproductively
mature individuals in the population is also highly relevant
because it is the basis for the International Union for the Con-
servation of Nature Red List assessments based on criterion
D (IUCN Standards and Petitions Committee, 2022) and is
generally used to evaluate wolf conservation status. Unac-
counted individual heterogeneity in detection or space use that
is linked with age class or sex could potentially lead to signifi-
cant bias (Cubaynes et al., 2010; Dupont et al., 2023). However,
thanks to the relatedness analysis, we were able to account
for differences between sexes and among individual status in
space use and detectability, therefore accounting for individual
heterogeneity (Cubaynes et al., 2010).

We report estimates for the overall area and distinguished
between portions of the population documented in the west-
ern and eastern part of the alpine regions (Table 1) because
connection among these portions is still limited and naturally
differentiated (Figure 1). The 2 portions of the population face
different recolonization momentum. In the west, recolonization
began 30 years ago. Wolves now completely occupy moun-
tainous areas with densities up to 15 wolves/100 km2 and are
now expanding farther in lowland areas. In the east, the recol-
onization process is recent, beginning in 2014, and although
expansion is evident (Figure 1a), large mountain areas are still
being recolonized. Overall, our population abundance estimates
showed the magnitude of recovery following the wolf alpine
extirpation by the early 1900s.

Coordinated network of operators for long-term
wolf monitoring and conservation practice

By conducting the first large-scale wolf survey in the Italian
alpine region, we created a large-scale network of specialized
operators that are now available for long-term biodiversity
conservation in practice. By training operators to collect and
record search effort data, we were able to overcome the main
challenge of citizen science data, that is, the lack of formalized
quantification of spatial–temporal heterogeneity in search effort
(Kalén et al., 2022). Moreover, we mainly engaged institutional
personnel to overcome the high administrative fragmenta-
tion in conservation practices by various government offices.
Although the creation of this network was time consuming,
results demonstrate its usefulness, and future wolf abundance
monitoring plans and analyses should benefit from the infras-
tructures put in place, decreasing the effort needed for future
population assessment. The creation of this network has also
been key to the involvement of practitioners, raising awareness
and spreading knowledge at the local scale. This effective par-
ticipatory approach can serve as the foundation for long-term
and reliable wolf abundance monitoring, favoring wolf–human

coexistence through knowledge dissemination, and provide an
important asset for long-term biodiversity conservation. The
multidisciplinary approach we adopted, which involved not
only the concerted efforts of several jurisdictions through field
sampling organized by wolf biologists, but also the coordina-
tion and harmonization between genetic laboratories, allowed
an unusually high level of interaction and discussion among
several disciplines (i.e., wildlife biology, conservation genetics,
ecological modeling). This effort resulted in the adoption of
an effective sampling design and modeling analysis, which took
into account the biology and distribution of the species, local
needs by authorities, and optimized survey efforts and related-
ness analyses, while minimizing genotyping errors, all of which
contributed critically to this analysis of the wolf population in
the Italian Alps.
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