11 research outputs found

    Tropical tree growth driven by dry-season climate variability

    Get PDF
    Interannual variability in the global land carbon sink is strongly related to variations in tropical temperature and rainfall. This association suggests an important role for moisture-driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify the responsible ecological processes is missing. Such evidence can be obtained from tree-ring data that quantify variability in a major vegetation productivity component: woody biomass growth. Here we compile a pantropical tree-ring network to show that annual woody biomass growth increases primarily with dry-season precipitation and decreases with dry-season maximum temperature. The strength of these dry-season climate responses varies among sites, as reflected in four robust and distinct climate response groups of tropical tree growth derived from clustering. Using cluster and regression analyses, we find that dry-season climate responses are amplified in regions that are drier, hotter and more climatically variable. These amplification patterns suggest that projected global warming will probably aggravate drought-induced declines in annual tropical vegetation productivity. Our study reveals a previously underappreciated role of dry-season climate variability in driving the dynamics of tropical vegetation productivity and consequently in influencing the land carbon sink.We acknowledge financial support to the co-authors provided by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 2014-2797) to M.E.F.; Alberta Mennega Stichting to P.G.; BBVA Foundation to H.A.M. and J.J.C.; Belspo BRAIN project: BR/143/A3/HERBAXYLAREDD to H.B.; Confederação da Agricultura e Pecuária do Brasil - CNA to C.F.; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Brazil (PDSE 15011/13-5 to M.A.P.; 88881.135931/2016-01 to C.F.; 88887.199858/2018-00 to G.A.-P.; Finance Code 001 for all Brazilian collaborators); Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brazil (ENV 42 to O.D.; 1009/4785031-2 to G.C.; 311874/2017-7 to J.S.); CONACYT-CB-2016-283134 to J.V.-D.; CONICET to F.A.R.; CUOMO FOUNDATION (IPCC scholarship) to M.M.; Deutsche Forschungsgemeinschaft - DFG (BR 1895/15-1 to A.B.; BR 1895/23-1 to A.B.; BR 1895/29-1 to A.B.; BR 1895/24-1 to M.M.); DGD-RMCA PilotMAB to B.T.; Dirección General de Asuntos del Personal Académico of the UNAM (Mexico) to R.B.; Elsa-Neumann-Scholarship of the Federal State of Berlin to F.S.; EMBRAPA Brazilian Agricultural Research Corporation to C.F.; Equatorian Dirección de Investigación UNL (21-DI-FARNR-2019) to D.P.-C.; São Paulo Research Foundation FAPESP (2009/53951-7 to M.T.-F.; 2012/50457-4 to G.C.; 2018/01847‐0 to P.G.; 2018/24514-7 to J.R.V.A.; 2019/08783-0 to G.M.L.; 2019/27110-7 to C.F.); FAPESP-NERC 18/50080-4 to G.C.; FAPITEC/SE/FUNTEC no. 01/2011 to M.A.P.; Fulbright Fellowship to B.J.E.; German Academic Exchange Service (DAAD) to M.I. and M.R.; German Ministry of Education, Science, Research, and Technology (FRG 0339638) to O.D.; ICRAF through the Forests, Trees, and Agroforestry research programme of the CGIAR to M.M.; Inter-American Institute for Global Change Research (IAI-SGP-CRA 2047) to J.V.-D.; International Foundation for Science (D/5466-1) to M.I.; Lamont Climate Center to B.M.B.; Miquelfonds to P.G.; National Geographic Global Exploration Fund (GEFNE80-13) to I.R.; USA’s National Science Foundation NSF (IBN-9801287 to A.J.L.; GER 9553623 and a postdoctoral fellowship to B.J.E.); NSF P2C2 (AGS-1501321) to A.C.B., D.G.-S. and G.A.-P.; NSF-FAPESP PIRE 2017/50085-3 to M.T.-F., G.C. and G.M.L.; NUFFIC-NICHE programme (HEART project) to B.K., E.M., J.H.S., J.N. and R. Vinya; Peru ‘s CONCYTEC and World Bank (043-2019-FONDECYT-BM-INC.INV.) to J.G.I.; Peru’s Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT-BM-INC.INV 039-2019) to E.J.R.-R. and M.E.F.; Programa Bosques Andinos - HELVETAS Swiss Intercooperation to M.E.F.; Programa Nacional de Becas y Crédito Educativo - PRONABEC to J.G.I.; Schlumberger Foundation Faculty for the Future to J.N.; Sigma Xi to A.J.L.; Smithsonian Tropical Research Institute to R. Alfaro-Sánchez.; Spanish Ministry of Foreign Affairs AECID (11-CAP2-1730) to H.A.M. and J.J.C.; UK NERC grant NE/K01353X/1 to E.G.Peer reviewe

    Patrones espacio-temporales de mortalidad por frío excesivo en México

    No full text
    This study presents a Spatio-temporal characterization of the relation between climate and mortality by intense cold using 37 years of data (1979-2015). It was analyzed mortality data, data from four national censuses, and gridded monthly minimum temperatures. These datasets were analyzed using frequency diagrams, and correlation and trend analyses. The highest mortality found mainly occurs in four relatively cold regions: the northwest of Mexico, the Mexican plateau, Los Altos de Chiapas, and the north border of Mexico. Although most of our results are consistent with the “the colder it is, the higher the mortality” paradigm, other results suggest a more complex relation between mortality rates and low temperatures. Particularly, it was found a weak correlation between mortality rates and low temperatures, and positive trends in mortality rates within warm climates with warm trends. These results suggest that acclimatization to a warmer climate might increase the vulnerability to extreme cold events. If so, even under a future warmer climate, adaptation strategies to intense cold in Mexico would be needed; such strategies would ideally be based on diagnostics of vulnerability.Este estudio presenta una caracterización espacio-temporal de la relación entre el clima y la mortalidad por frío excesivo usando registros con 37 años de información (1979-2015). Se analizaron datos de mortalidad, datos poblacionales de cuatro censos nacionales y datos en malla de temperaturas mínimas mensuales usando histogramas, correlaciones y un análisis de tendencias. La mortalidad más alta encontrada ocurre principalmente en cuatro regiones relativamente frías: el noroeste de México, el Altiplano Central, Los Altos de Chiapas y la frontera norte de México. Aunque la mayoría de nuestros resultados son consistentes con el paradigma “a más frío, más muertes por frío intenso”, otros sugieren una relación compleja entre la mortalidad en tasas y las bajas temperaturas. En particular, se encontró una correlación débil entre tasas de mortalidad y temperaturas mínimas, y tendencias de tasas de mortalidad positivas en medio de un clima con tendencias cálidas. Estos resultados sugieren que la aclimatización a un clima más cálido podría incrementar la vulnerabilidad de las personas a eventos extremos fríos, lo cual, consecuentemente, sugiere que, aun bajo un entorno futuro más cálido en México, serían necesarias medidas de adaptación ante el frío intenso basadas en diagnósticos de vulnerabilidad

    Tropical tree growth driven by dry-season climate variability

    No full text
    Interannual variability in the global land carbon sink is strongly related to variations in tropical temperature and rainfall. This association suggests an important role for moisture-driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify the responsible ecological processes is missing. Such evidence can be obtained from tree-ring data that quantify variability in a major vegetation productivity component: woody biomass growth. Here we compile a pantropical tree-ring network to show that annual woody biomass growth increases primarily with dry-season precipitation and decreases with dry-season maximum temperature. The strength of these dry-season climate responses varies among sites, as reflected in four robust and distinct climate response groups of tropical tree growth derived from clustering. Using cluster and regression analyses, we find that dry-season climate responses are amplified in regions that are drier, hotter and more climatically variable. These amplification patterns suggest that projected global warming will probably aggravate drought-induced declines in annual tropical vegetation productivity. Our study reveals a previously underappreciated role of dry-season climate variability in driving the dynamics of tropical vegetation productivity and consequently in influencing the land carbon sink.Fil: Zuidema, Pieter A.. University of Agriculture Wageningen; Países BajosFil: Babst, Flurin. University of Arizona; Estados UnidosFil: Groenendijk, Peter. Universidade Estadual de Campinas; BrasilFil: Trouet, Valerie. University of Arizona; Estados UnidosFil: Abiyu, Abrham. World Agroforestry Centre; KeniaFil: Acuña Soto, Rodolfo. Universidad Nacional Autónoma de México; MéxicoFil: Adenesky Filho, Eduardo. Universidade Regional de Blumenau; BrasilFil: Alfaro Sánchez, Raquel. Wilfrid Laurier University; CanadáFil: Aragão, José Roberto Vieira. Universidade Estadual de Campinas; BrasilFil: Assis Pereira, Gabriel. Universidade de Sao Paulo; Brasil. Universidad Federal de Lavras; BrasilFil: Bai, Xue. Chinese Academy of Sciences; República de ChinaFil: Barbosa, Ana Carolina. Universidad Federal de Lavras; BrasilFil: Battipaglia, Giovanna. Seconda Universita Degli Studi Di Napoli; ItaliaFil: Beeckman, Hans. Royal Museum For Central Africa; BélgicaFil: Botosso, Paulo Cesar. Embrapa Forestry; BrasilFil: Bradley, Tim. U.S. Department of Agriculture; Estados UnidosFil: Bräuning, Achim. Universitat Erlangen Nuremberg; AlemaniaFil: Brienen, Roel. University of Leeds; Reino UnidoFil: Buckley, Brendan M.. Columbia University; Estados UnidosFil: Camarero, J. Julio. Instituto Pirenaico de Ecología; EspañaFil: Carvalho, Ana. Universidad de Coimbra; PortugalFil: Ceccantini, Gregório. Universidade de Sao Paulo; BrasilFil: Centeno Erguera, Librado R.. Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias; MéxicoFil: Cerano Paredes, Julián. Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias; MéxicoFil: Chávez-Durán, Álvaro Agustín. Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias; MéxicoFil: Cintra, Bruno Barçante Ladvocat. Universidade de Sao Paulo; BrasilFil: Cleaveland, Malcolm K.. University of Arkansas for Medical Sciences; Estados UnidosFil: Couralet, Camille. Royal Museum For Central Africa; BélgicaFil: D?Arrigo, Rosanne. Columbia University; Estados UnidosFil: del Valle, Jorge Ignacio. Universidad Nacional de Colombia; ColombiaFil: Ferrero, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Lopez Callejas, Lidio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Mayor; Chil

    Tropical tree growth driven by dry-season climate variability

    Get PDF
    Interannual variability in the global land carbon sink is strongly related to variations in tropical temperature and rainfall. This association suggests an important role for moisture-driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify the responsible ecological processes is missing. Such evidence can be obtained from tree-ring data that quantify variability in a major vegetation productivity component: woody biomass growth. Here we compile a pantropical tree-ring network to show that annual woody biomass growth increases primarily with dry-season precipitation and decreases with dry-season maximum temperature. The strength of these dry-season climate responses varies among sites, as reflected in four robust and distinct climate response groups of tropical tree growth derived from clustering. Using cluster and regression analyses, we find that dry-season climate responses are amplified in regions that are drier, hotter and more climatically variable. These amplification patterns suggest that projected global warming will probably aggravate drought-induced declines in annual tropical vegetation productivity. Our study reveals a previously underappreciated role of dry-season climate variability in driving the dynamics of tropical vegetation productivity and consequently in influencing the land carbon sink

    Tropical tree growth driven by dry-season climate variability

    No full text
    Interannual variability in the global land carbon sink is strongly related to variations in tropical temperature and rainfall. This association suggests an important role for moisture-driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify the responsible ecological processes is missing. Such evidence can be obtained from tree-ring data that quantify variability in a major vegetation productivity component: woody biomass growth. Here we compile a pantropical tree-ring network to show that annual woody biomass growth increases primarily with dry-season precipitation and decreases with dry-season maximum temperature. The strength of these dry-season climate responses varies among sites, as reflected in four robust and distinct climate response groups of tropical tree growth derived from clustering. Using cluster and regression analyses, we find that dry-season climate responses are amplified in regions that are drier, hotter and more climatically variable. These amplification patterns suggest that projected global warming will probably aggravate drought-induced declines in annual tropical vegetation productivity. Our study reveals a previously underappreciated role of dry-season climate variability in driving the dynamics of tropical vegetation productivity and consequently in influencing the land carbon sink

    Libro de Proyectos Finales 2021 primer semestre

    No full text
    PregradoIngeniero CivilIngeniero de SistemasIngeniero ElectricistaIngeniero ElectrónicoIngeniero IndustrialIngeniero Mecánic
    corecore