568 research outputs found

    A Comprehensive View of the 2006 December 13 CME: From the Sun to Interplanetary Space

    Full text link
    The biggest halo coronal mass ejection (CME) since the Halloween storm in 2003, which occurred on 2006 December 13, is studied in terms of its solar source and heliospheric consequences. The CME is accompanied by an X3.4 flare, EUV dimmings and coronal waves. It generated significant space weather effects such as an interplanetary shock, radio bursts, major solar energetic particle (SEP) events, and a magnetic cloud (MC) detected by a fleet of spacecraft including STEREO, ACE, Wind and Ulysses. Reconstruction of the MC with the Grad-Shafranov (GS) method yields an axis orientation oblique to the flare ribbons. Observations of the SEP intensities and anisotropies show that the particles can be trapped, deflected and reaccelerated by the large-scale transient structures. The CME-driven shock is observed at both the Earth and Ulysses when they are separated by 74^{\circ} in latitude and 117^{\circ} in longitude, the largest shock extent ever detected. The ejecta seems missed at Ulysses. The shock arrival time at Ulysses is well predicted by an MHD model which can propagate the 1 AU data outward. The CME/shock is tracked remarkably well from the Sun all the way to Ulysses by coronagraph images, type II frequency drift, in situ measurements and the MHD model. These results reveal a technique which combines MHD propagation of the solar wind and type II emissions to predict the shock arrival time at the Earth, a significant advance for space weather forecasting especially when in situ data are available from the Solar Orbiter and Sentinels.Comment: 26 pages, 10 figures. 2008, ApJ, in pres

    La literatura, una herramienta para la física

    Get PDF
    In this paper we show a way of using literature as a didactic resource in the physics teaching, particularly in teaching of some topics of kinematics. A strategy is designed in which, through science fiction literature, it is possible high school students take interest in scientific subjects and at the same time to feel identified with characters of the story, because they were also integral humans. We based on authors like Julio Verne, Iván Obregón and others, have produced possible literary material to be implemented in science teaching.En este artículo mostramos una manera de utilizar la literatura como recurso didáctico en la enseñanza de la física, en particular en la enseñanza de algunos temas de cinemática. Se diseña una estrategia en la que por medio de la literatura se logra que los estudiantes de media vocacional se interesen en temas científicos y a la vez se sientan identificados con los personajes de la historia, debido a que ellos también fueron seres humanos íntegros. Nos basamos en autores como Julio Verne, Iván Obregón y otros, han producido material literario posible de ser implementado en la enseñanza de las ciencias

    Pobreza en México: Factor de vulnerabilidad para enfrentar los efectos del cambio climático

    Get PDF
    Poverty levels that occur in Mexico are a problem that is becoming increasingly acute in the different territorial levels. The shortage of financial resources for access to goods, services and cultural factor, constitute the main constraint to access an adequate standard of living, which provide comprehensive security conditions in the population. This condition is a determining factor in the inability to deal with the various hydrometeorological and geological phenomena that occur as part of climatic changes in the Earth system, a situation that undermines the population living in poverty to suffer the ravages in all dimensions: physical, economic and social. Climate change, seen as a process that has been more acute due to human activity in the different territorial levels weakens the ability of response and prevention of disasters caused by it, not just vulnerable groups, rather, intervention government agencies, leading to moments of political, economic and social instability in the different action levels (local, state and national).Rev. iberoam. bioecon. cambio clim. Vol. 1 num 2, 2015, pág. 1-19Los niveles de pobreza que se presentan en México constituyen una problemática que se agudiza cada vez más en las diferentes escalas territoriales. La escasez de recursos económicos para el acceso a bienes, servicios y el factor cultural, constituyen la principal restricción para acceder a un nivel de vida adecuado, el cual proporcione condiciones integrales de seguridad en la población. Dicha condición resulta un factor determinante en la imposibilidad para hacer frente a los distintos fenómenos hidrometeorológicos y geológicos que se presentan como parte de las alteraciones climáticas en el sistema terrestre, situación que vulnera a la población en condición de pobreza a padecer los estragos en todas sus dimensiones: física, económica y social. El cambio climático, visto como un proceso que ha venido agudizándose debido a la actividad antrópica en las diferentes escalas territoriales, debilita la capacidad de respuesta y prevención de desastres ocasionados por éste, no sólo en los grupos vulnerables, más bien, en la intervención de las instancias gubernamentales, lo que conlleva a momentos de inestabilidad política, económica y social en los diferentes niveles de actuación (local, estatal y nacional).Rev. iberoam. bioecon. cambio clim. Vol. 1 num 2, 2015, pág. 1-1

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co

    Fluorescent Pigment and Phenol Glucosides from the Heartwood of Pterocarpus marsupium

    Get PDF
    The fluorescence shown by extracts of the heartwood of Pterocarpus marsupium is attributed to salts of the new compound 1, whose structure was elaborated using detailed spectroscopic/ spectrometric studies. The plant material also contains the nonfluorescent compounds 2 and 3. The absolute configuration of 1 was determined by experimental and theoretically calculated electronic CD spectra, while that of 3 was deduced from ECD comparison with reported results in the α-hydroxydihydrochalcone series

    Cryptic speciation in gentoo penguins is driven by geographic isolation and regional marine conditions: Unforeseen vulnerabilities to global change

    Get PDF
    The conservation of biodiversity is hampered by data deficiencies, with many new species and subspecies awaiting description or reclassification. Population genomics and ecological niche modelling offer complementary new tools for un-covering functional units of phylogenetic diversity. We hypothesize that phyloge-netically delineated lineages of gentoo penguins (Pygoscelis papua) distributed across Antarctica and sub-Antarctic Islands are subject to spatially explicit ecological con-ditions that have limited gene flow, facilitating genetic differentiation, and thereby speciation processes

    Planetary system LHS 1140 revisited with ESPRESSO and TESS

    Get PDF
    Context. LHS 1140 is an M dwarf known to host two transiting planets at orbital periods of 3.77 and 24.7 days. They were detected with HARPS and Spitzer. The external planet (LHS 1140 b) is a rocky super-Earth that is located in the middle of the habitable zone of this low-mass star. All these properties place this system at the forefront of the habitable exoplanet exploration, and it therefore constitutes a relevant case for further astrobiological studies, including atmospheric observations. Aims. We further characterize this system by improving the physical and orbital properties of the known planets, search for additional planetary-mass components in the system, and explore the possibility of co-orbitals. Methods. We collected 113 new high-precision radial velocity observations with ESPRESSO over a 1.5-yr time span with an average photon-noise precision of 1.07 m s-1. We performed an extensive analysis of the HARPS and ESPRESSO datasets and also analyzed them together with the new TESS photometry. We analyzed the Bayesian evidence of several models with different numbers of planets and orbital configurations. Results. We significantly improve our knowledge of the properties of the known planets LHS 1140 b (Pb ∼ 24.7 days) and LHS 1140 c (Pc ∼ 3.77 days). We determine new masses with a precision of 6% for LHS 1140 b (6.48 ± 0.46 Mpdbl) and 9% for LHS 1140 c (mc = 1.78 ± 0.17 Mpdbl). This reduces the uncertainties relative to previously published values by half. Although both planets have Earth-like bulk compositions, the internal structure analysis suggests that LHS 1140 b might be iron-enriched and LHS 1140 c might be a true Earth twin. In both cases, the water content is compatible to a maximum fraction of 10-12% in mass, which is equivalent to a deep ocean layer of 779 ± 650 km for the habitable-zone planet LHS 1140 b. Our results also provide evidence for a new planet candidate in the system (md = 4.8 ± 1.1Mpdbl) on a 78.9-day orbital period, which is detected through three independent methods. The analysis also allows us to discard other planets above 0.5 Mpdbl for periods shorter than 10 days and above 2 Mpdbl for periods up to one year. Finally, our co-orbital analysis discards co-orbital planets in the tadpole and horseshoe configurations of LHS 1140 b down to 1 Mpdbl with a 95% confidence level (twice better than with the previous HARPS dataset). Indications for a possible co-orbital signal in LHS 1140 c are detected in both radial velocity (alternatively explained by a high eccentricity) and photometric data (alternatively explained by systematics), however. Conclusions. The new precise measurements of the planet properties of the two transiting planets in LHS 1140 as well as the detection of the planet candidate LHS 1140 d make this system a key target for atmospheric studies of rocky worlds at different stellar irradiations.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    Structure Learning in Human Sequential Decision-Making

    Get PDF
    Studies of sequential decision-making in humans frequently find suboptimal performance relative to an ideal actor that has perfect knowledge of the model of how rewards and events are generated in the environment. Rather than being suboptimal, we argue that the learning problem humans face is more complex, in that it also involves learning the structure of reward generation in the environment. We formulate the problem of structure learning in sequential decision tasks using Bayesian reinforcement learning, and show that learning the generative model for rewards qualitatively changes the behavior of an optimal learning agent. To test whether people exhibit structure learning, we performed experiments involving a mixture of one-armed and two-armed bandit reward models, where structure learning produces many of the qualitative behaviors deemed suboptimal in previous studies. Our results demonstrate humans can perform structure learning in a near-optimal manner
    corecore