735 research outputs found
Potential for classical biological control of the potato bug Closterotomus norwegicus (Hemiptera: Miridae): description, parasitism and host specificity of Peristenus closterotomae sp. n. (Hymenoptera: Braconidae)
The potato bug, Closterotomus norwegicus (Gmelin) (Hemiptera: Miridae) is an introduced pest of lucerne, white clover and lotus seed crops in New Zealand and a key pest of pistachios in California, USA. Efforts were made to identify potential biological control agents of C. norwegicus in Europe. A total of eight parasitoids, including six primary parasitoids from the genus Peristenus (Hymenoptera: Braconidae) and two hyperparasitoids from the genus Mesochorus (Hymenoptera: Ichneumonidae), were reared from C. norwegicus nymphs collected in various habitats in northern Germany. With a proportion of more than 85% of all C. norwegicus parasitoids, Peristenus closterotomae (Hymenoptera: Braconidae), a new species, was the most dominant parasitoid, whereas other parasitoid species only occurred sporadically. Peristenus closterotomae did not fit in the keys to any described species and is described as new to science. Parasitism caused by P. closterotomae was on average 24% (maximum 77%). To assess the host specificity of parasitoids associated with C. norwegicus, the parasitoid complexes of various Miridae occurring simultaneously with C. norwegicus were studied. Peristenus closterotomae was frequently reared from Calocoris affinis (Herrich-Schaeffer), and a few specimens were reared from Calocoris roseomaculatus (De Geer) and the meadow plant bug, Leptopterna dolobrata (Linnaeus) (all Hemiptera: Miridae). The remaining primary parasitoids associated with C. norwegicus were found to be dominant in hosts other than C. norwegicus. Whether nymphal parasitoids may potentially be used in a classical biological control initiative against the potato bug in countries where it is introduced and considered to be a pest is discusse
On the Structure and Scale of Cosmic Ray Modified Shocks
Strong astrophysical shocks, diffusively accelerating cosmic rays (CR) ought
to develop CR precursors. The length of such precursor is believed to
be set by the ratio of the CR mean free path to the shock speed,
i.e., , which is formally
independent of the CR pressure . However, the X-ray observations of
supernova remnant shocks suggest that the precursor scale may be significantly
shorter than which would question the above estimate unless the
magnetic field is strongly amplified and the gyroradius is strongly
reduced over a short (unresolved) spatial scale. We argue that while the CR
pressure builds up ahead of the shock, the acceleration enters into a strongly
nonlinear phase in which an acoustic instability, driven by the CR pressure
gradient, dominates other instabilities (at least in the case of low
plasma). In this regime the precursor steepens into a strongly nonlinear front
whose size scales with \emph{the CR pressure}as , where is the scale of
the developed acoustic turbulence, and is the ratio of CR to gas
pressure. Since , the precursor scale reduction may be strong
in the case of even a moderate gas heating by the CRs through the acoustic and
(possibly also) the other instabilities driven by the CRs.Comment: EPS 2010 paper, to appear in PPC
Particle acceleration at ultrarelativistic shocks: an eigenfunction method
We extend the eigenfunction method of computing the power-law spectrum of
particles accelerated at a relativistic shock fronts to apply to shocks of
arbitrarily high Lorentz factor. In agreement with the findings of Monte-Carlo
simulations, we find the index of the power-law distribution of accelerated
particles which undergo isotropic diffusion in angle at an ultrarelativistic,
unmagnetized shock is s=4.23 (where s=-d(ln f)/dp with f the Lorentz invariant
phase-space density and p the momentum). This corresponds to a synchrotron
index for uncooled electrons of a=0.62 (taking cooling into account a=1.12),
where a=-d(ln F)/dn, F is the radiation flux and n the frequency. We also
present an approximate analytic expression for the angular distribution of
accelerated particles, which displays the effect of particle trapping by the
shock: compared with the non-relativistic case the angular distribution is
weighted more towards the plane of the shock and away from its normal. We
investigate the sensitivity of our results to the transport properties of the
particles and the presence of a magnetic field. Shocks in which the ratio of
Poynting to kinetic energy flux upstream is not small are less compressive and
lead to larger values of .Comment: Minor additions on publicatio
On the mechanism for breaks in the cosmic ray spectrum
The proof of cosmic ray (CR) origin in supernova remnants (SNR) must hinge on
full consistency of the CR acceleration theory with the observations; direct
proof is impossible because of the orbit stochasticity of CR particles. Recent
observations of a number of galactic SNR strongly support the SNR-CR connection
in general and the Fermi mechanism of CR acceleration, in particular. However,
many SNR expand into weakly ionized dense gases, and so a significant revision
of the mechanism is required to fit the data. We argue that strong ion-neutral
collisions in the remnant surrounding lead to the steepening of the energy
spectrum of accelerated particles by \emph{exactly one power}. The spectral
break is caused by a partial evanescence of Alfven waves that confine particles
to the accelerator. The gamma-ray spectrum generated in collisions of the
accelerated protons with the ambient gas is also calculated. Using the recent
Fermi spacecraft observation of the SNR W44 as an example, we demonstrate that
the parent proton spectrum is a classical test particle power law , steepening to at .Comment: APS talk to appear in PoP, 4 figure
Sources of dissolved iron to oxygen minimum zone waters on the Senegalese continental margin in the tropical North Atlantic Ocean: Insights from iron isotopes
Oxygen minimum zones (OMZs) cover extensive areas of eastern boundary ocean regions and play an important role in the cycling of the essential micronutrient iron (Fe). The isotopic composition of dissolved Fe (dFe) in shelf and slope waters on the Senegalese margin was determined to investigate the processes leading to enhanced dFe concentrations (up to 2 nM) in this tropical North Atlantic OMZ. On the shelf, the δ56Fe value of dFe (relative to the reference material IRMM-014) was as low as −0.33‰, which can be attributed to input of dFe from both reductive and nonreductive dissolution of sediments. Benthic inputs of dFe are subsequently upwelled to surface waters and recycled in the water column by biological uptake and remineralisation processes. Remineralised dFe is characterised by relatively high δ56Fe values (up to +0.41‰), and the contribution of remineralised Fe to the total dFe pool increases with distance from the shelf. Remineralisation plays an important role in the redistribution of dFe that is mainly supplied by benthic and atmospheric inputs, although dust inputs, estimated from dissolved aluminium concentrations, were low at the time of our study (2–9 nmol dFe m−2 d−1). As OMZs are expected to expand as climate warms, our data provide important insights into Fe sources and Fe cycling in the tropical North Atlantic Ocean
Skeletal Morphology of Opius dissitus and Biosteres carbonarius (Hymenoptera: Braconidae), with a Discussion of Terminology
The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study
First report of Dinocampus coccinellae (Hym.: Braconidae) from Iran
در نمونهبرداریهایی که طی شهریور تا آبان ماه 1389 در مزرعه تحقیقاتی دانشگاه بوعلی سینا در دستجرد همدان جهت بررسی میزان پارازیتیسم کفشدوزک Hippodamia variegata (Goeze) (Col.: Coccinellidae) انجام شد، زنبور پارازیتوئید Dinocampus coccinellae (Schrank) جمعآوری گردید. این زنبور برای اولینبار از ایران گزارش میشود
Using the Nursing Interventions Classification to identify nursing interventions in free-text nursing documentation in adult psychiatric outpatient care setting
Aims and objectives To identify and describe nursing interventions in patient documentation in adult psychiatric outpatient setting and to explore the potential for using the Nursing Interventions Classification in documentation in this setting. Background Documentation is an important part of nurses' work, and in the psychiatric outpatient care setting, it can be time-consuming. Only very few research reports are available on nursing documentation in this care setting. Methods A qualitative analysis of secondary data consisting of nursing documentation for 79 patients in four outpatient units (years 2016-2017). The data consisted of 1,150 free-text entries describing a contact or an attempted contact with 79 patients, their family members or supporting networks and 17 nursing care summaries. Deductive and inductive content analysis was used. SRQR guideline was used for reporting. Results We identified 71 different nursing interventions, 64 of which are described in the Nursing Interventions Classification. Surveillance and Care Coordination were the most common interventions. The analysis revealed two perspectives which challenge the use of the classification: the problem of overlapping interventions and the difficulty of naming group-based interventions. Conclusion There is an urgent need to improve patient documentation in the adult psychiatric outpatient care setting, and standardised nursing terminologies such as the Nursing Interventions Classification could be a solution to this. However, the problems of overlapping interventions and naming group-based interventions suggest that the classification needs to be further developed before it can fully support the systematic documentation of nursing interventions in the psychiatric outpatient care setting. Relevance to clinical practice This study describes possibilities of using a systematic nursing language to describe the interventions nurses use in the adult psychiatric outpatient setting. It also describes problems in the current free text-based documentation.Peer reviewe
Extraction of the atmospheric neutrino fluxes from experimental event rate data
The precise knowledge of the atmospheric neutrino fluxes is a key ingredient
in the interpretation of the results from any atmospheric neutrino experiment.
In the standard atmospheric neutrino data analysis, these fluxes are
theoretical inputs obtained from sophisticated numerical calculations. In this
contribution we present an alternative approach to the determination of the
atmospheric neutrino fluxes based on the direct extraction from the
experimental data on neutrino event rates. The extraction is achieved by means
of a combination of artificial neural networks as interpolants and Monte Carlo
methods.Comment: 6 pages, 2 figs, to appear in the proceedings of the 2nd
International Conference on Quantum Theories and Renormalization Group in
Gravity and Cosmology, Barcelona, July 200
Interstellar Turbulence II: Implications and Effects
Interstellar turbulence has implications for the dispersal and mixing of the
elements, cloud chemistry, cosmic ray scattering, and radio wave propagation
through the ionized medium. This review discusses the observations and theory
of these effects. Metallicity fluctuations are summarized, and the theory of
turbulent transport of passive tracers is reviewed. Modeling methods, turbulent
concentration of dust grains, and the turbulent washout of radial abundance
gradients are discussed. Interstellar chemistry is affected by turbulent
transport of various species between environments with different physical
properties and by turbulent heating in shocks, vortical dissipation regions,
and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered
and accelerated in turbulent magnetic waves and shocks, and they generate
turbulence on the scale of their gyroradii. Radio wave scintillation is an
important diagnostic for small scale turbulence in the ionized medium, giving
information about the power spectrum and amplitude of fluctuations. The theory
of diffraction and refraction is reviewed, as are the main observations and
scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and
Astrophysic
- …