7 research outputs found
The Influence of the Auxiliary Ligand in Monofunctional Pt(II) Anticancer Complexes on the DNA Backbone
Monofunctional platinum complexes offer a promising alternative to cisplatin in cancer chemotherapy, showing a unique mechanism of action. Their ability to induce minor helix distortions effectively inhibits DNA transcription. In our study, we synthesized and characterized three monofunctional Pt(II) complexes with the general formula [Pt(en)(L)Cl]NO3, where en = ethylenediamine, and L = pyridine (py), 2-methylpyridine (2-mepy), and 2-phenylpyridine (2-phpy). The hydrolysis rates of [Pt(en)(py)Cl]NO3 (1) and [Pt(en)(2-mepy)Cl]NO3 (2) decrease with the bulkiness of the auxiliary ligand with k(1) = 2.28 ± 0.15 × 10−4 s−1 and k(2) = 8.69 ± 0.98 × 10−5 s−1 at 298 K. The complex [Pt(en)(2-phpy)Cl]Cl (3) demonstrated distinct behavior. Upon hydrolysis, an equilibrium (Keq = 0.385 mM) between the complexes [Pt(en)(2-phpy)Cl]+ and [Pt(en)(2-phpy-H+)]+ was observed with no evidence (NMR or HR-ESI-MS) for the presence of the aquated complex [Pt(en)(2-phpy)(H2O)]2+. Despite the kinetic similarities between phenanthriplatin and (2), complexes (1) and (2) exhibit minimal activity against A549 lung cancer cell line (IC50 > 100 μΜ), whereas complex (3) exhibits notable cytotoxicity (IC50 = 41.11 ± 2.1 μΜ). In examining the DNA binding of (1) and (2) to the DNA model guanosine (guo), we validated their binding through guoN7, which led to an increased population of the C3′-endo sugar conformation, as expected. However, we observed that the rapid transition 2E (C2′-endo) ↔ 3E (C3′-endo), in the case of [Pt(en)(py)(guo)](NO3)2 ([1-guo]), slows down in the case of [Pt(en)(2-mepy)(guo)](NO3)2 ([2-guo]), resulting in separate signals for the two conformers in the 1H NMR spectra. This phenomenon arises from the steric hindrance between the methyl group of pyridine and the sugar moiety of guanosine. Notably, this hindrance is absent in [2-(9-MeG)] (9-MeG = 9-methylguanine), probably due to the absence of a bulky sugar unit in 9-MeG. In the case of (3), where the bulkiness of the substitution on the pyridine is further increased by a phenyl group, we observed a notable proximity between 9-MeGH8 and the phenyl ring of 2-phpy. Considering that only (3) exhibited good cytotoxicity against the A549 cancer cell line, it is suggested that auxiliary ligands, L, with an extended aromatic system and proper orientation in complexes of the type cis-[Pt(en)(L)Cl]NO3, may enhance the cytotoxic activity of such complexes
A new benzodiazepine molecule and its interactions with diorganotin(IV)chlorides
2-Methyl-2,4-di-thiophen-2?,2?-yl-2,3-dihydro-1H-benzo[b][1,4]diazepine (L) has been synthesized through condensation of phenylene-1,2-diamine and 2-acetylthiophene, and its reactions with dialkyltin(IV)dichlorides have been studied. Two salts formulated as (LH)[R2SnCl3] (R = Et, 1; R = Me, 2) have been isolated. L and 1 were structurally characterized. The conformation of the benzodiazepine L, changes in 1 due to H-bonds formation. [Et2SnCl3]- is one of the rare examples of five coordinated tin(IV) species and has distorted trigonal bipyramidal geometry. H-bonding interactions, in 1, lead to the formation of supramolecular helices
NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds
Extra virgin olive oil (EVOO) is recognized for its numerous health benefits, attributed to its rich phenolic components. NMR has emerged as a prevalent technique for precisely identifying these compounds. Among Mediterranean countries, Greece stands as the third-largest producer of olives, with the Epirus region notably advancing in olive cultivation, contributing significantly to the dynamic growth of the region. In this study, an NMR method was employed based on the acquisition of a 1H NMR spectrum along with multiple resonant suppression in order to increase the sensitivity. Using the above method, 198 samples of extra virgin olive oil, primarily sourced from the Epirus region, were analyzed, and both the qualitative and quantitative aspects of the phenolic compounds were obtained. In addition, we examined the effects of various factors such as variety, harvest month, and region origin on the phenolic compounds’ concentration. The results revealed an average total phenolic content of 246 mg/kg, closely approaching the EU health claim limit of 250 mg/kg. Approximately 15% of the samples were confidently characterized as high-phenolic olive oil. The highest concentrations were observed in the Thesprotia samples, with several Lianolia varieties exceeding the total phenolic content of 400 mg/kg. Statistical tests demonstrated a significant influence of the olive variety and the month of fruit harvest on phenolic component concentration, followed by the region of origin. A very strong correlation was noted between the total phenolics content and the levels of oleocanthal and oleacein, with a correlation coefficient (r) of 0.924. Upon optimization of all factors affecting olive oil quality, the majority of the EVOOs from the Epirus region have the potential to be characterized as high in phenolic content