47 research outputs found

    Assessment of Above-Ground Biomass of Borneo Forests through a New Data-Fusion Approach Combining Two Pan-Tropical Biomass Maps

    Get PDF
    This study investigates how two existing pan-tropical above-ground biomass (AGB) maps (Saatchi 2011, Baccini 2012) can be combined to derive forest ecosystem specific carbon estimates. Several data-fusion models which combine these AGB maps according to their local correlations with independent datasets such as the spectral bands of SPOT VEGETATION imagery are analyzed. Indeed these spectral bands convey information about vegetation type and structure which can be related to biomass values. Our study area is the island of Borneo. The data-fusion models are evaluated against a reference AGB map available for two forest concessions in Sabah. The highest accuracy was achieved by a model which combines the AGB maps according to the mean of the local correlation coefficients calculated over different kernel sizes. Combining the resulting AGB map with a new Borneo land cover map (whose overall accuracy has been estimated at 86.5%) leads to average AGB estimates of 279.8 t/ha and 233.1 t/ha for forests and degraded forests respectively. Lowland dipterocarp and mangrove forests have the highest and lowest AGB values (305.8 t/ha and 136.5 t/ha respectively). The AGB of all natural forests amounts to 10.8 Gt mainly stemming from lowland dipterocarp (66.4%), upper dipterocarp (10.9%) and peat swamp forests (10.2%). Degraded forests account for another 2.1 Gt of AGB. One main advantage of our approach is that, once the best fitting data-fusion model is selected, no further AGB reference dataset is required for implementing the data-fusion process. Furthermore, the local harmonization of AGB datasets leads to more spatially precise maps. This approach can easily be extended to other areas in Southeast Asia which are dominated by lowland dipterocarp forest, and can be repeated when newer or more accurate AGB maps become available.JRC.H.3-Forest Resources and Climat

    Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling

    Get PDF
    Long-chain bases (LCBs) are pleiotropic sphingolipidic signals in eukaryotes. We investigated the source and function of phytosphingosine-1-phosphate (PHS-P), a phospho-LCB rapidly and transiently formed in Arabidopsis thaliana on chilling.PHS-P was analysed by thin-layer chromatography following in vivo metabolic radiolabelling. Pharmacological and genetic approaches were used to identify the sphingosine kinase isoforms involved in cold-responsive PHS-P synthesis. Gene expression, mitogen-activated protein kinase activation and growth phenotypes of three LCB kinase mutants (lcbk1, sphk1 and lcbk2) were studied following cold exposure. Chilling provoked the rapid and transient formation of PHS-P in Arabidopsis cultured cells and plantlets. Cold-evoked PHS-P synthesis was reduced by LCB kinase inhibitors and abolished in the LCB kinase lcbk2 mutant, but not in lcbk1 and sphk1 mutants. lcbk2 presented a constitutive AtMPK6 activation at 22°C. AtMPK6 activation was also triggered by PHS-P treatment independently of PHS/PHS-P balance. lcbk2 mutants grew comparably with wild-type plants at 22 and 4°C, but exhibited a higher root growth at 12°C, correlated with an altered expression of the cold-responsive DELLA gene RGL3. Together, our data indicate a function for LCBK2 in planta. Furthermore, they connect PHS-P formation with plant response to cold, expanding the field of LCB signalling in plants

    Long-term monitoring of tropical moist forest extent (from 1990 to 2019): Description of the dataset

    Get PDF
    The need for accurate information on the state and evolution of tropical forest types at regional and continental scales is widely recognized, particularly to analyze the forest diversity and dynamics, to assess degradation and deforestation processes and to better manage these natural resources. Here we document the approach that was developed by JRC to map and monitor the extent of moist tropical forests and their changes (degradation, deforestation and regrowth) over the last three decades (1990-2020) at fine spatial resolution (30 m × 30 m). The approach is based on the analysis of each valid observation from the Landsat archive and allows to capture disturbances with a short-duration appearance on satellite imagery such as selective logging, fires, and severe weather events (hurricanes, dryness). This new approach allows characterizing the sequential dynamics of forest cover changes by providing transition stages from the initial observation period to the most recent year (2019 for this report). For the first time at the pantropical scale the occurrence and extent of forest degradation can be documented on an annual basis in addition to the monitoring of deforestation. After a short introduction (chapter 1), this technical report describes the study area (chapter 2), the input data (chapter 3), the method that has been developed (chapter 4), and the outcomes of this study (chapter 5). A discussion is also provided regarding the specificities and added value of the outcomes (chapter 6), and the known limitations and future expected improvements (chapter 7). This new pan-tropical scale deforestation and forest degradation monitoring system will contribute to the EU Observatory on deforestation, forest degradation, changes in the world’s forest cover, and associated drivers, which is an action being implemented in the framework of the Communication from the Commission to step up EU action to protect and restore the World’s forests (COM(2019) 352).JRC.D.1-Bio-econom

    Contamination de l’environnement par les produits phytopharmaceutiques en France : approches bibliographiques et bibliométriques

    No full text
    International audienceINRAE et l’Ifremer ont été sollicités pour réaliser un état des lieux des connaissances scientifiques relatives aux impacts des produits phytopharmaceutiques (PPP) sur la biodiversité et les services écosystémiques. Un groupe de travail composé d’experts scientifiques et de documentalistes s’est plus particulièrement intéressé aux questions liées à la contamination des différents compartiments de l’environnement par les PPP (milieux terrestres et aquatiques, atmosphère). Sont présentés ici, la démarche bibliographique mise en place pour répondre aux questions de la saisine, puis l’étude bibliométrique des documents analysés et enfin une synthèse des principaux résultats et perspectives de recherche

    Assessment of Above-Ground Biomass of Borneo Forests through a New Data-Fusion Approach Combining Two Pan-Tropical Biomass Maps

    Get PDF
    This study investigates how two existing pan-tropical above-ground biomass (AGB) maps (Saatchi 2011, Baccini 2012) can be combined to derive forest ecosystem specific carbon estimates. Several data-fusion models which combine these AGB maps according to their local correlations with independent datasets such as the spectral bands of SPOT VEGETATION imagery are analyzed. Indeed these spectral bands convey information about vegetation type and structure which can be related to biomass values. Our study area is the island of Borneo. The data-fusion models are evaluated against a reference AGB map available for two forest concessions in Sabah. The highest accuracy was achieved by a model which combines the AGB maps according to the mean of the local correlation coefficients calculated over different kernel sizes. Combining the resulting AGB map with a new Borneo land cover map (whose overall accuracy has been estimated at 86.5%) leads to average AGB estimates of 279.8 t/ha and 233.1 t/ha for forests and degraded forests respectively. Lowland dipterocarp and mangrove forests have the highest and lowest AGB values (305.8 t/ha and 136.5 t/ha respectively). The AGB of all natural forests amounts to 10.8 Gt mainly stemming from lowland dipterocarp (66.4%), upper dipterocarp (10.9%) and peat swamp forests (10.2%). Degraded forests account for another 2.1 Gt of AGB. One main advantage of our approach is that, once the best fitting data-fusion model is selected, no further AGB reference dataset is required for implementing the data-fusion process. Furthermore, the local harmonization of AGB datasets leads to more spatially precise maps. This approach can easily be extended to other areas in Southeast Asia which are dominated by lowland dipterocarp forest, and can be repeated when newer or more accurate AGB maps become available
    corecore