21 research outputs found

    Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Succinate dehydrogenase (SDH) has been associated with carcinogenesis in pheochromocytoma and paraganglioma. In the present study we investigated components of the oxidative phosphorylation system in human neuroblastoma tissue samples.</p> <p>Methods</p> <p>Spectrophotometric measurements, immunohistochemical analysis and Western blot analysis were used to characterize the aerobic mitochondrial energy metabolism in neuroblastomas (NB).</p> <p>Results</p> <p>Compared to mitochondrial citrate synthase, SDH activity was severely reduced in NB (n = 14) versus kidney tissue. However no pathogenic mutations could be identified in any of the four subunits of SDH. Furthermore, no genetic alterations could be identified in the two novel SDH assembly factors SDHAF1 and SDH5. Alterations in genes encoding nfs-1, frataxin and isd-11 that could lead to a diminished SDH activity have not been detected in NB.</p> <p>Conclusion</p> <p>Because downregulation of other complexes of the oxidative phosphorylation system was also observed, a more generalized reduction of mitochondrial respiration seems to be present in neuroblastoma in contrast to the single enzyme defect found in hereditary pheochromocytomas.</p

    Body growth, upper arm fat area, and clinical parameters in children with nephropathic cystinosis compared with other pediatric chronic kidney disease entities

    No full text
    Children with infantile nephropathic cystinosis (INC), an inherited lysosomal storage disease resulting in cystine accumulation in all body cells, are prone to progressive chronic kidney disease (CKD), impaired growth and reduced weight gain; however, systematic anthropometric analyses are lacking. In this prospective multicenter study we investigated linear growth, body proportion, body mass index (BMI), upper arm fat area (UFA) and biochemical parameters in 43 pediatric INC patients with CKD stages 1 to 5 and 49 age-matched CKD controls, with 193 annual measurements. INC patients showed more impaired height than CKD controls (-1.8 vs -0.7 z-score; P < .001), despite adequate cysteamine therapy, treatment for Fanconi syndrome and more frequent use of growth hormone. Only the youngest INC patients shared the same body pattern with CKD controls characterized by preferential impairment of leg length and rather preserved trunk length. In late-prepuberty, body pattern changed only in INC patients due to improved leg growth and more impaired trunk length. Mean UFA z-score in INC patients was slightly reduced in early childhood and progressively decreased thereafter reaching -0.8 z-score in adolescence, while CKD controls showed a steady increase in standardized BMI and UFA especially during adolescent age. Menarche in female INC patients was significantly delayed compared to CKD controls. Our data indicate that with age and progression of disease, pediatric INC patients undergo unique changes of body growth and fat stores that are distinct from those with CKD stemming from other causes, suggesting other factors apart from CKD to contribute to this development. Pediatric patients with infantile nephropathic cystinosis display more severe impaired linear growth than other peer CKD patients, despite of cysteamine treatment, supplementation for Fanconi syndrome, and more frequent use of growth hormone, with a distinct change of body proportions and overall lower body fat

    Bone and Mineral Metabolism in Children with Nephropathic Cystinosis Compared with other CKD Entities

    No full text
    Context: Children with nephropathic cystinosis (NC) show persistent hypophosphatemia, due to Fanconi syndrome, as well as mineral and bone disorders related to chronic kidney disease (CKD); however, systematic analyses are lacking. Objective: To compare biochemical parameters of bone and mineral metabolism between children with NC and controls across all stages of CKD. Design: Cross-sectional multicenter study. Setting: Hospital clinics. Patients: Forty-nine children with NC, 80 CKD controls of the same age and CKD stage. Main outcome measures: Fibroblast growth factor 23 (FGF23), soluble Klotho, bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin, osteoprotegerin (OPG), biochemical parameters related to mineral metabolism, and skeletal comorbidity. Results: Despite Fanconi syndrome medication, NC patients showed an 11-fold increased risk of short stature, bone deformities, and/or requirement for skeletal surgery compared with CKD controls. This was associated with a higher frequency of risk factors such as hypophosphatemia, hypocalcemia, low parathyroid hormone (PTH), metabolic acidosis, and a specific CKD stage-dependent pattern of bone marker alterations. Pretransplant NC patients in mild to moderate CKD showed a delayed increase or lacked an increase in FGF23 and sclerostin, and increased BAP, TRAP5b, and OPG concentrations compared with CKD controls. Post-transplant, BAP and OPG returned to normal, TRAP5b further increased, whereas FGF23 and PTH were less elevated compared with CKD controls and associated with higher serum phosphate. Conclusions: Patients with NC show more severe skeletal comorbidity associated with distinct CKD stage-dependent alterations of bone metabolism than CKD controls, suggesting impaired mineralization and increased bone resorption, which is only partially normalized after renal transplantation

    Deoxyribonucleotide Metabolism in Cycling and Resting Human Fibroblasts with a Missense Mutation in p53R2, a Subunit of Ribonucleotide Reductase*

    No full text
    Ribonucleotide reduction provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and DNA repair. In cycling mammalian cells the reaction is catalyzed by two proteins, R1 and R2. A third protein, p53R2, with the same function as R2, occurs in minute amounts. In quiescent cells, p53R2 replaces the absent R2. In humans, genetic inactivation of p53R2 causes early death with mtDNA depletion, especially in muscle. We found that cycling fibroblasts from a patient with a lethal mutation in p53R2 contained a normal amount of mtDNA and showed normal growth, ribonucleotide reduction, and deoxynucleoside triphosphate (dNTP) pools. However, when made quiescent by prolonged serum starvation the mutant cells strongly down-regulated ribonucleotide reduction, decreased their dCTP and dGTP pools, and virtually abolished the catabolism of dCTP in substrate cycles. mtDNA was not affected. Also, nuclear DNA synthesis and the cell cycle-regulated enzymes R2 and thymidine kinase 1 decreased strongly, but the mutant cell populations retained unexpectedly larger amounts of the two enzymes than the controls. This difference was probably due to their slightly larger fraction of S phase cells and therefore not induced by the absence of p53R2 activity. We conclude that loss of p53R2 affects ribonucleotide reduction only in resting cells and leads to a decrease of dNTP catabolism by substrate cycles that counterweigh the loss of anabolic activity. We speculate that this compensatory mechanism suffices to maintain mtDNA in fibroblasts but not in muscle cells with a larger content of mtDNA necessary for their high energy requirements
    corecore