12 research outputs found

    Prognostic value of circulating tumor cells and disseminated tumor cells in patients with ovarian cancer: a systematic review and meta-analysis

    Get PDF
    Recent studies have shown diagnostic and prognostic values of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in various cancers, including ovarian cancer. We aimed to evaluate the association of CTCs and/or DTCs with the clinical outcomes of ovarian cancer. Clinical studies of CTCs/DTCs of ovarian cancer were included for systematic review and meta-analysis. A total of 236 studies were screened but only 16 qualified studies with 1623 subjects were included. Odds ratio (OR) showed CTCs/DTCs were not significantly associated with serous carcinoma (OR = 0.71 [0.49, 1.05]), lymph node metastasis (OR 1.14 [0.67, 1.93]), and residual disease (OR 1.45 [0.90, 2.34]); but significantly associated with advanced tumor staging (OR = 1.90 [1.02, 3.56]). The overall pooled hazard ratio (HR) of CTCs/DTCs on OS and PFS/DFS was 1.94 [1.56– 2.40] and 1.99 [1.59–2.50], respectively. Subgroup analyses revealed that CTCs were significantly associated OS (HR 1.97 [1.50-2.58]) and PFS/DFS (HR 2.52 [1.83-3.48]), while DTCs was significantly associated OS (HR 1.89 [1.33, 2.68]) and PFS/DFS (HR 1.60 [1.17, 2.19]). Meta-analysis showed strong relationship of CTCs/DTCs with advanced staging, treatment response and poor prognosis in patients with ovarian cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13048-015-0168-9) contains supplementary material, which is available to authorized users

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Tunable Nanostructured Coating for the Capture and Selective Release of Viable Circulating Tumor Cells

    No full text
    A layer-by-layer gelatin nanocoating is presented for use as a tunable, dual response biomaterial for the capture and release of circulating tumor cells (CTCs) from cancer patient blood. The entire nanocoating can be dissolved from the surface of microfluidic devices through biologically compatible temperature shifts. Alternatively, individual CTCs can be released through locally applied mechanical stress

    Genomic Instability Is Induced by Persistent Proliferation of Cells Undergoing Epithelial-to-Mesenchymal Transition

    No full text
    TGF-β secreted by tumor stroma induces epithelial-to-mesenchymal transition (EMT) in cancer cells, a reversible phenotype linked to cancer progression and drug resistance. However, exposure to stromal signals may also lead to heritable changes in cancer cells, which are poorly understood. We show that epithelial cells failing to undergo proliferation arrest during TGF-β-induced EMT sustain mitotic abnormalities due to failed cytokinesis, resulting in aneuploidy. This genomic instability is associated with the suppression of multiple nuclear envelope proteins implicated in mitotic regulation and is phenocopied by modulating the expression of LaminB1. While TGF-β-induced mitotic defects in proliferating cells are reversible upon its withdrawal, the acquired genomic abnormalities persist, leading to increased tumorigenic phenotypes. In metastatic breast cancer patients, increased mesenchymal marker expression within single circulating tumor cells is correlated with genomic instability. These observations identify a mechanism whereby microenvironment-derived signals trigger heritable genetic changes within cancer cells, contributing to tumor evolution

    Controversies around epithelial–mesenchymal plasticity in cancer metastasis

    No full text
    Experimental evidence accumulated over decades has implicated epithelial–mesenchymal plasticity (EMP), which collectively encompasses epithelial–mesenchymal transition and the reverse process of mesenchymal–epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial–mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.See 'additional link' for access to a free to read version of the article.</p
    corecore