9 research outputs found

    Conservation genomics of the endangered Seychelles Magpie‐Robin (Copsychus sechellarum):a unique insight into the history of a precious endemic bird

    Get PDF
    The Seychelles Magpie-Robin Copsychus sechellarum is an IUCN Red-List Endangered species endemic to the Seychelles, whose population was reduced to eight individuals on a single island in the 1960s. Translocations from the remaining population to four additional islands have been an integral factor in their recovery, but the potential genetic consequences of their translocation history have not previously been explored. We resequenced the genomes of 141 individuals sampled across the five current island populations and analysed the data to characterize their population structure, as well as to explore suspected inbreeding. Overall, very low levels of heterozygosity were observed, all coupled with long homozygous segments that suggest recent inbreeding, probably the consequence of a population bottleneck in the 1960s. Three of the four translocated populations displayed less genetic diversity than the founder population from which they were taken, a familiar pattern observed as a result of the evolutionary force of genetic drift following founder events. Furthermore, and perhaps surprising given the recent time since the new populations were established, population structure was observed within these same three populations. New awareness of inbreeding in the Seychelles Magpie-Robin populations, and continued genetic monitoring, will allow for genetically informed management decisions. This is particularly prudent in maximizing the success of the future conservation translocation planned for this species

    When birds of a feather flock together: Severe genomic erosion and the implications for genetic rescue in an endangered island passerine

    Get PDF
    The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR

    A major myna problem; invasive predator removal benefits female survival and population growth of a translocated island endemic

    Get PDF
    Invasive predators are a major driver of extinctions and continue to threaten native populations worldwide. Island eradications of (mostly mammalian) invasive predators have facilitated the reestablishment of numerous island-endemic populations. Other invasive taxa, such as some predatory birds, could pose a more persistent threat due to their ability to fly and actively re-invade even remote and isolated islands. However, the impact of invasive predatory birds has been largely overlooked. We report on a novel sex-specific impact of an invasive-nest predator, the common myna (Acridotheres tristis), on a reintroduced population of Seychelles warblers (Acrocephalus sechellensis); translocated from Cousin Island to Denis Island in 2004. Regular post-translocation monitoring revealed that female mortality was 20 % higher than males, leading to a 60–70 % male-biased population sex-ratio between 2005 and 2015. This was attributed to common mynas inflicting severe injuries to incubating female Seychelles warblers while attempting to prey upon eggs in their nests. These effects likely contributed to the slower-than-expected population growth observed (relative to previous translocations of Seychelles warblers to other islands) over the same period. An eradication programme beginning in 2011 removed all common mynas from Denis by 2015. Subsequently, we observed a balancing of sex-specific survival and the population sex-ratio of Seychelles warblers and, consequently, accelerated population growth. This study demonstrates the importance of assessing the threat posed by all invasive taxa (not just mammals) to island conservation. Furthermore, we show how extended monitoring is needed to identify problems, and develop solutions, post-translocation

    Data from: Persistence of distinctive morphotypes in the native range of the CITES-listed Aldabra giant tortoise

    No full text
    Understanding the extent of morphological variation in the wild population of Aldabra giant tortoises is important for conservation, as morphological variation in captive populations has been interpreted as evidence for lingering genes from extinct tortoise lineages. If true, this could impact reintroduction programmes in the region. The population of giant tortoises on Aldabra Atoll is subdivided and distributed around several islands. Although pronounced morphological variation was recorded in the late 1960s, it was thought to be a temporary phenomenon. Early researchers also raised concerns over the future of the population, which was perceived to have exceeded its carrying capacity. We analyzed monthly monitoring data from 12 transects spanning a recent 15-year period (1998–2012) during which animals from four subpopulations were counted, measured, and sexed. In addition, we analyzed survival data from individuals first tagged during the early 1970s. The population is stable with no sign of significant decline. Subpopulations differ in density, but these differences are mostly due to differences in the prevailing vegetation type. However, subpopulations differ greatly in both the size of animals and the degree of sexual dimorphism. Comparisons with historical data reveal that phenotypic differences among the subpopulations of tortoises on Aldabra have been apparent for the last 50 years with no sign of diminishing. We conclude that the giant tortoise population on Aldabra is subject to varying ecological selection pressures, giving rise to stable morphotypes in discrete subpopulations. We suggest therefore that (1) the presence of morphological differences among captive Aldabra tortoises does not alone provide convincing evidence of genes from other extinct species; and (2) Aldabra serves as an important example of how conservation and management in situ can add to the scientific value of populations and perhaps enable them to better adapt to future ecological pressures

    Conservation genomics of the endangered Seychelles Magpie-Robin (Copsychus sechellarum): a unique insight into the history of a precious endemic bird

    No full text
    The Seychelles Magpie-Robin Copsychus sechellarum is an IUCN Red-List Endangered species endemic to the Seychelles, whose population was reduced to eight individuals on a single island in the 1960s. Translocations from the remaining population to four additional islands have been an integral factor in their recovery, but the potential genetic consequences of their translocation history have not previously been explored. We resequenced the genomes of 141 individuals sampled across the five current island populations and analysed the data to characterize their population structure, as well as to explore suspected inbreeding. Overall, very low levels of heterozygosity were observed, all coupled with long homozygous segments that suggest recent inbreeding, probably the consequence of a population bottleneck in the 1960s. Three of the four translocated populations displayed less genetic diversity than the founder population from which they were taken, a familiar pattern observed as a result of the evolutionary force of genetic drift following founder events. Furthermore, and perhaps surprising given the recent time since the new populations were established, population structure was observed within these same three populations. New awareness of inbreeding in the Seychelles Magpie-Robin populations, and continued genetic monitoring, will allow for genetically informed management decisions. This is particularly prudent in maximizing the success of the future conservation translocation planned for this species

    Data from: Persistence of distinctive morphotypes in the native range of the CITES-listed Aldabra giant tortoise

    No full text
    Understanding the extent of morphological variation in the wild population of Aldabra giant tortoises is important for conservation, as morphological variation in captive populations has been interpreted as evidence for lingering genes from extinct tortoise lineages. If true, this could impact reintroduction programmes in the region. The population of giant tortoises on Aldabra Atoll is subdivided and distributed around several islands. Although pronounced morphological variation was recorded in the late 1960s, it was thought to be a temporary phenomenon. Early researchers also raised concerns over the future of the population, which was perceived to have exceeded its carrying capacity. We analyzed monthly monitoring data from 12 transects spanning a recent 15-year period (1998–2012) during which animals from four subpopulations were counted, measured, and sexed. In addition, we analyzed survival data from individuals first tagged during the early 1970s. The population is stable with no sign of significant decline. Subpopulations differ in density, but these differences are mostly due to differences in the prevailing vegetation type. However, subpopulations differ greatly in both the size of animals and the degree of sexual dimorphism. Comparisons with historical data reveal that phenotypic differences among the subpopulations of tortoises on Aldabra have been apparent for the last 50 years with no sign of diminishing. We conclude that the giant tortoise population on Aldabra is subject to varying ecological selection pressures, giving rise to stable morphotypes in discrete subpopulations. We suggest therefore that (1) the presence of morphological differences among captive Aldabra tortoises does not alone provide convincing evidence of genes from other extinct species; and (2) Aldabra serves as an important example of how conservation and management in situ can add to the scientific value of populations and perhaps enable them to better adapt to future ecological pressures
    corecore