123 research outputs found

    The ability of digital breast tomosynthesis to reduce additional examinations in older women

    Get PDF
    AimsTo assess the diagnostic performance of digital breast tomosynthesis (DBT) in older women across varying breast densities and to compare its effectiveness for cancer detection with 2D mammography and ultrasound (U/S) for different breast density categories. Furthermore, our study aimed to predict the potential reduction in unnecessary additional examinations among older women due to DBT.MethodsThis study encompassed a cohort of 224 older women. Each participant underwent both 2D mammography and digital breast tomosynthesis examinations. Supplementary views were conducted when necessary, including spot compression and magnification, ultrasound, and recommended biopsies. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) were calculated for 2D mammography, DBT, and ultrasound. The impact of DBT on diminishing the need for supplementary imaging procedures was predicted through binary logistic regression.ResultsIn dense breast tissue, DBT exhibited notably heightened sensitivity and NPV for lesion detection compared to non-dense breasts (61.9% vs. 49.3%, p < 0.001) and (72.9% vs. 67.9%, p < 0.001), respectively. However, the AUC value of DBT in dense breasts was lower compared with non-dense breasts (0.425 vs. 0.670). Regarding the ability to detect calcifications, DBT demonstrated significantly improved sensitivity and NPV in dense breasts compared to non-dense breasts (100% vs. 99.2%, p < 0.001) and (100% vs. 94.7%, p < 0.001), respectively. On the other hand, the AUC value of DBT was slightly lower in dense breasts compared with non-dense (0.682 vs. 0.711). Regarding lesion detection for all cases between imaging examinations, the highest sensitivity was observed in 2D mammography (91.7%, p < 0.001), followed by DBT (83.7%, p < 0.001), and then ultrasound (60.6%, p < 0.001). In dense breasts, sensitivity for lesion detection was highest in 2D mammography (92.9%, p < 0.001), followed by ultrasound (76.2%, p < 0.001), and the last one was DBT. In non-dense breasts, sensitivities were 91% (p < 0.001) for 2D mammography, 50.7% (p < 0.001) for ultrasound, and 49.3% (p < 0.001) for DBT. In terms of calcification detection, DBT displayed significantly superior sensitivity compared to 2D mammography in both dense and non-dense breasts (100% vs. 91.4%, p < 0.001) and (99.2% vs. 78.5%, p < 0.001), respectively. However, the logistic regression model did not identify any statistically significant relationship (p > 0.05) between DBT and the four dependent variables.ConclusionOur findings indicate that among older women, DBT does not significantly decrease the requirement for further medical examinations

    A novel voting classifier for electric vehicles population at different locations using Al-Biruni earth radius optimization algorithm

    Get PDF
    The rising popularity of electric vehicles (EVs) can be attributed to their positive impact on the environment and their ability to lower operational expenses. Nevertheless, the task of determining the most suitable EV types for a specific site continues to pose difficulties, mostly due to the wide range of consumer preferences and the inherent limits of EVs. This study introduces a new voting classifier model that incorporates the Al-Biruni earth radius optimization algorithm, which is derived from the stochastic fractal search. The model aims to predict the optimal EV type for a given location by considering factors such as user preferences, availability of charging infrastructure, and distance to the destination. The proposed classification methodology entails the utilization of ensemble learning, which can be subdivided into two distinct stages: pre-classification and classification. During the initial stage of classification, the process of data preprocessing involves converting unprocessed data into a refined, systematic, and well-arranged format that is appropriate for subsequent analysis or modeling. During the classification phase, a majority vote ensemble learning method is utilized to categorize unlabeled data properly and efficiently. This method consists of three independent classifiers. The efficacy and efficiency of the suggested method are showcased through simulation experiments. The results indicate that the collaborative classification method performs very well and consistently in classifying EV populations. In comparison to similar classification approaches, the suggested method demonstrates improved performance in terms of assessment metrics such as accuracy, sensitivity, specificity, and F-score. The improvements observed in these metrics are 91.22%, 94.34%, 89.5%, and 88.5%, respectively. These results highlight the overall effectiveness of the proposed method. Hence, the suggested approach is seen more favorable for implementing the voting classifier in the context of the EV population across different geographical areas

    Electrical power output prediction of combined cycle power plants using a recurrent neural network optimized by waterwheel plant algorithm

    Get PDF
    It is difficult to analyze and anticipate the power output of Combined Cycle Power Plants (CCPPs) when considering operational thermal variables such as ambient pressure, vacuum, relative humidity, and temperature. Our data visualization study shows strong non-linearity in the experimental data. We observe that CCPP energy production increases linearly with temperature but not pressure. We offer the Waterwheel Plant Algorithm (WWPA), a unique metaheuristic optimization method, to fine-tune Recurrent Neural Network hyperparameters to improve prediction accuracy. A robust mathematical model for energy production prediction is built and validated using anticipated and experimental data residuals. The residuals’ uniformity above and below the regression line suggests acceptable prediction errors. Our mathematical model has an R-squared value of 0.935 and 0.999 during training and testing, demonstrating its outstanding predictive accuracy. This research provides an accurate way to forecast CCPP energy output, which could improve operational efficiency and resource utilization in these power plants

    Feature Selection And Enhanced Krill Herd Algorithm For Text Document Clustering

    Get PDF
    Text document (TD) clustering is a new trend in text mining in which the TDs are separated into several coherent clusters, where documents in the same cluster are similar. In this study, a new method for solving the TD clustering problem worked in the following two stages: (i) A new feature selection method using particle swarm optimization algorithm with a novel weighting scheme and a detailed dimension reduction technique are proposed to obtain a new subset of more informative features with low-dimensional space

    Forecasting wind power based on an improved al-Biruni Earth radius metaheuristic optimization algorithm

    Get PDF
    Wind power forecasting is pivotal in optimizing renewable energy generation and grid stability. This paper presents a groundbreaking optimization algorithm to enhance wind power forecasting through an improved al-Biruni Earth radius (BER) metaheuristic optimization algorithm. The BER algorithm, based on stochastic fractal search (SFS) principles, has been refined and optimized to achieve superior accuracy in wind power prediction. The proposed algorithm is denoted by BERSFS and is used in an ensemble model’s feature selection and optimization to boost prediction accuracy. In the experiments, the first scenario covers the proposed binary BERSFS algorithm’s feature selection capabilities for the dataset under test, while the second scenario demonstrates the algorithm’s regression capabilities. The BERSFS algorithm is investigated and compared to state-of-the-art algorithms of BER, SFS, particle swarm optimization, gray wolf optimizer, and whale optimization algorithm. The proposed optimizing ensemble BERSFS-based model is also compared to the basic models of long short-term memory, bidirectional long short-term memory, gated recurrent unit, and the k-nearest neighbor ensemble model. The statistical investigation utilized Wilcoxon’s rank-sum and analysis of variance tests to investigate the robustness of the created BERSFS-based model. The achieved results and analysis confirm the effectiveness and superiority of the proposed approach in wind power forecasting

    MaOMFO: Many-objective moth flame optimizer using reference-point based non-dominated sorting mechanism for global optimization problems

    Get PDF
    Many-objective optimization (MaO) deals with a large number of conflicting objectives in optimization problems to acquire a reliable set of appropriate non-dominated solutions near the true Pareto front, and for the same, a unique mechanism is essential. Numerous papers have reported multi-objective evolutionary algorithms to explain the absence of convergence and diversity variety in many-objective optimization problems. One of the most encouraging methodologies utilizes many reference points to segregate the solutions and guide the search procedure. The above-said methodology is integrated into the basic version of the Moth Flame Optimization (MFO) algorithm for the first time in this paper. The proposed Many-Objective Moth Flame Optimization (MaOMFO) utilizes a set of reference points progressively decided by the hunt procedure of the moth flame. It permits the calculation to combine with the Pareto front yet synchronize the decent variety of the Pareto front. MaOMFO is employed to solve a wide range of unconstrained and constrained benchmark functions and compared with other competitive algorithms, such as non-dominated sorting genetic algorithm, multi-objective evolutionary algorithm based on dominance and decomposition, and novel multi-objective particle swarm optimization using different performance metrics. The results demonstrate the superiority of the algorithm as a new many-objective algorithm for complex many-objective optimization problems

    HYBRID GENETIC AND PENGUIN SEARCH OPTIMIZATION ALGORITHM (GA-PSEOA) FOR EFFICIENT FLOW SHOP SCHEDULING SOLUTIONS

    Get PDF
    This paper presents a novel hybrid approach, fusing genetic algorithms (GA) and penguin search optimization (PSeOA), to address the flow shop scheduling problem (FSSP). GA utilizes selection, crossover, and mutation inspired by natural selection, while PSeOA emulates penguin foraging behavior for efficient exploration. The approach integrates GA's genetic diversity and solution space exploration with PSeOA's rapid convergence, further improved with FSSP-specific modifications. Extensive experiments validate its efficacy, outperforming pure GA, PSeOA, and other metaheuristics

    Pluronic F-127 hydrogel for stem cell research: a bibliometric analysis using Scopus database

    Get PDF
    Stem cell research holds immense promise in regenerative medicine. However, the successful utilization of stem cells relies on their inherent properties and the appropriate support matrix that provides an optimal environment for growth and differentiation. Optimizing their delivery and retention at the target site is crucial to enhance stem cell-based therapies' effectiveness. In recent years, hydrogels have emerged as a popular choice for culturing and delivering stem cells due to their unique properties, including biocompatibility, tunable physical and chemical characteristics, and mimicking the native extracellular matrix. Among the various hydrogels available, Pluronic F-127 (PF-127) has gained significant attention in stem cell research. This paper aims to study the publication trends of research that discuss the utilization of PF-127 hydrogel for stem cell research. The analysis is based on data extracted from the Scopus database using bibliometric methods. The results revealed the publication trends, collaboration patterns among authors and institutions, research areas, influential journals, funding agencies, and thematic connections in this field. By understanding the current state of research and identifying key areas of focus, this analysis provides valuable insights for researchers and practitioners interested in harnessing the potential of PF-127 hydrogel in regenerative medicine and tissue engineering

    An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment

    Get PDF
    peer reviewedThe Internet of Things (IoT) is constantly evolving. The variety of IoT applications has caused new demands to emerge on users’ part and competition between computing service providers. On the one hand, an IoT application may exhibit several important criteria, such as deadline and runtime simultaneously, and it is confronted with resource limitations and high energy consumption on the other hand. This has turned to adopting a computing environment and scheduling as a fundamental challenge. To resolve the issue, IoT applications are considered in this paper as a workflow composed of a series of interdependent tasks. The tasks in the same workflow (at the same level) are subject to priorities and deadlines for execution, making the problem far more complex and closer to the real world. In this paper, a hybrid Particle Swarm Optimization and Simulated Annealing algorithm (PSO–SA) is used for prioritizing tasks and improving fitness function. Our proposed method managed the task allocation and optimized energy consumption and makespan at the fog-cloud environment nodes. The simulation results indicated that the PSO–SA enhanced energy and makespan by 5% and 9% respectively on average compared with the baseline algorithm (IKH-EFT)
    corecore