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The rising popularity of electric vehicles (EVs) can be attributed to their positive
impact on the environment and their ability to lower operational expenses.
Nevertheless, the task of determining the most suitable EV types for a specific
site continues to pose difficulties, mostly due to the wide range of consumer
preferences and the inherent limits of EVs. This study introduces a new voting
classifier model that incorporates the Al-Biruni earth radius optimization algorithm,
which is derived from the stochastic fractal search. The model aims to predict the
optimal EV type for a given location by considering factors such as user preferences,
availability of charging infrastructure, and distance to the destination. The proposed
classificationmethodology entails the utilization of ensemble learning, which can be
subdivided into two distinct stages: pre-classification and classification. During the
initial stage of classification, the process of data preprocessing involves converting
unprocessed data into a refined, systematic, and well-arranged format that is
appropriate for subsequent analysis or modeling. During the classification phase,
a majority vote ensemble learning method is utilized to categorize unlabeled data
properly and efficiently. This method consists of three independent classifiers. The
efficacy and efficiency of the suggestedmethod are showcased through simulation
experiments. The results indicate that the collaborative classification method
performs very well and consistently in classifying EV populations. In comparison
to similar classification approaches, the suggested method demonstrates improved
performance in terms of assessment metrics such as accuracy, sensitivity,
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specificity, and F-score. The improvements observed in these metrics are 91.22%,
94.34%, 89.5%, and 88.5%, respectively. These results highlight the overall
effectiveness of the proposed method. Hence, the suggested approach is seen
more favorable for implementing the voting classifier in the context of the EV
population across different geographical areas.

KEYWORDS

electric vehicles, Al-Biruni earth radius optimization algorithm, machine learning,
geographic information system, voting classifier, sustainable transportation

1 Introduction

Since the transportation industry heavily depends on finite fossil
fuels, which not only have a limited supply but also contribute
significantly to global warming, the world has made a deliberate
decision to change its energy policy agenda. This shift is aimed at
reducing the reliance on fossil fuels gradually. The European Green
Deal, (2019) pledged carbon balance by 2050 and a 55% reduction in
GHG emissions by 2030 compared to 1990 levels. When it comes to
road transportation, most countries around the world, especially
United States and EU, plan to introduce new powertrain systems,
specifically EVs, which are emerging as a feasible substitute for
traditional internal combustion engine (ICE) vehicles. EVs are seen
as a flexible solution for road mobility and are therefore being
promoted by those countries as a means of phasing out ICE vehicles.

According to (International Energy Agency, 2021), the global
EV stock reached 10 million vehicles, representing a 43% increase
compared to the previous year. In addition to their environmental
benefits, EVs offer several advantages, such as lower operating costs,
quieter driving, and reduced dependency on fossil fuels (Z Yan, et al.,
2023). Furthermore, advancements in battery technology have
enabled EVs to achieve longer ranges and faster charging times,
making them a more viable option for consumers (Dimitriadou,
et al., 2023). The European Commission has recognized the
potential of EVs and is actively promoting their adoption
through various policies, including the Clean Vehicles Directive
and the Alternative Fuels Infrastructure Directive (European
Commission, 2021). With the increasing availability of charging
infrastructure and the continued development of EV technology, it
is expected that the adoption of EVs will continue to grow in the
coming years, contributing to a more sustainable and decarbonized
transportation sector. Different kinds of EVs have been made for
road use, and they have different features based on their technology.
They can be grouped into these categories (Alanazi, 2023).

• A Battery Electric Vehicle (BEV) is an automobile that is
propelled solely by one or more electric motors and a
rechargeable battery that is powered through a plug, also
known as a plug-in battery.

• A Fuel-Cell Electric Vehicle (FCEV) operates using an electric
motor that is powered by electricity generated through a fuel cell.
This fuel cell uses hydrogen from a tank on board the vehicle that
is combined with atmospheric oxygen to produce electricity. The
only emissions produced by this type of vehicle are water and heat.

• A Hybrid Electric Vehicle (HEV) relies mainly on a traditional
combustion engine for power but also includes an electric motor
and a small battery to provide additional power during low-speed

modes, typically under 50 km/h. Compared to pure internal
combustion engine (ICE) vehicles, HEVs have lower emissions.

• A Plug-in Hybrid Vehicle (PHEV) is a type of hybrid vehicle
that can operate as a pure Battery Electric Vehicle (BEV) for
limited distances.

Irrespective of the specific type of EV, all variants are evaluated
using a common metric, which is the amount of carbon dioxide
(CO2) equivalent emissions measured in grams (g) per kilometer
(km) traveled, denoted as gCO2 eq/km. This metric enables EVs to
be evaluated and compared based on their environmental impact.
Although there is no consensus on the definitions used, the
following classifications can be applied according to (ACEA, 2020).

• Zero Emission Vehicles (ZEVs) are vehicles that do not
produce any direct emissions, irrespective of the energy
mix of the power source used.

• Low Emission Vehicles (LEVs) are vehicles that have relatively
low direct emissions, although the specified limit valuemay vary.

• Ultra-Low Emission Vehicles (ULEVs) are vehicles that have
emissions between 0 gCO2 eq/km and 50 gCO2 eq/km. These
vehicles have significantly lower emissions than traditional
internal combustion engine vehicles and are considered to be
highly environmentally friendly.

The usage of EVs is experiencing rapid growth worldwide and is
anticipated to continue to grow in the years to come. As shown in
Figure 1, according to (Research And Markets report, 2022), the
global EV market was valued at USD 205.58 billion in 2022 and is
projected to expand to USD 1,716.83 billion by 2032 at a noteworthy
compound annual growth rate (CAGR) of 23.1%. In 2021, the
number of EVs sold soared to a record high of 6.6 million,
representing almost 9% of all vehicle sales. Projections suggest
that EVs could account for as much as 60% of new car sales by
the year 2050 (International Energy Agency (IEA), 2020).

EVuser behavior can include driving patterns, such as the frequency
and duration of trips, the distance traveled, and the locations visited
(Langbroek et al., 2017). Understanding driving patterns can inform the
design of EVs with appropriate range and charging capabilities and can
also inform the development of charging infrastructure. EV user
behavior can also include charging behavior, such as when and
where users charge their EVs, how long it takes to charge, and what
types of charging methods they use. Understanding charging behavior
can help in designing charging infrastructure that is convenient and
accessible for users. User satisfaction can also impact EV user behavior.
If users are satisfied with their EVs and the overall EV experience, they
are more likely to continue using them and recommend them to others.
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It is possible to create a voting classifier for the population of
EVs by combining numerous criteria that influence the performance
and attributes of EVs (Nasir Salari, 2022). The range and maximum
driving distance of an EV are directly proportional to the capacity of
its battery. A larger battery has the benefit of increasing the car’s
range, but it also makes the vehicle heavier and more expensive. The
voting classifier is able to assign different weights to the various sizes
of batteries based on the trade-offs associated with each. The
acceleration and top speed of the EV are both determined by the
power output of the electric motor. A motor with a higher power
output has a higher top speed and acceleration, but it also has a
higher overall energy requirement. The voting classifier has the
ability to give different power outputs different weights based on
how well they function and how efficient they are. The amount of
time it takes to charge the battery is a major factor in determining
how convenient and useable an EV is. A quicker charging time
allows for more frequent usage of the EV, but it may require a more
expensive charging infrastructure to accommodate the increased
demand. The voting classifier is able to assign different charge times
varying weights according to how practical and expensive they are.
The cost of the EV is a significant consideration for the vast majority
of buyers, and it is directly related to both the vehicle’s accessibility
and its perceived worth. A cheaper price makes the EV more
accessible, but it could come at the expense of features or
performance. The voting classifier has the ability to give different
price ranges different weights depending on the demand and
competition in the market. It is possible for the trustworthiness
and dependability of an EV to be affected by the manufacturer’s
brand reputation. Customers can receive reassurance and
confidence from purchasing a well-known and respected brand
that has a proven track record. The voting classifier has the
ability to give different brands different weights based on how
well they are known and how satisfied their customers are.

The following is a list of the primary contributions that this
paper makes.

• A framework for classifying EV populations based on the
binary BER technique combined with three fundamental
classification models (K-Nearest Neighbor,
Decision Tree, and Random Forest) is provided. This
framework will be used for feature selection and voting
classification.

• On the basis of the binary BER optimization algorithm, a novel
feature selection algorithm is proposed.

• The framework that has been proposed is capable of properly
classifying the population of EVs at various locations based on
different conditions.

• To guarantee that the proposed algorithms are of a sufficient
quality, statistical tests such as theWilcoxon rank-sum and the
ANOVA are carried out.

• This methodology can be generalized to apply to the
applications of finding the optimal location for charging
stations for EVs.

This paper proposes a novel voting classifier for the EV
population in different locations using majority voting ensemble
learning to enhance classification performance. The study used a
dataset published on the Data.gov platform containing information
on the population of EVs in the United States. The dataset includes
data from 2011 to the present and is updated regularly. The data is
organized by state and includes the number of EVs registered in each
state, as well as the number of EVs per capita. The dataset also
includes information on the make and model of EVs, as well as the
year they were manufactured.

The remaining parts of the paper are structured as follows. A
literature review related to the EV classification problem is presented
in Section 2. Section 3 is an overview of the problem statement and
the proposed framework. Material and methods are presented in
detail in Section 4. Section 5 will discuss the experimental
simulations and some cases for comparison. Finally, the paper is
concluded in Section 6.

FIGURE 1
Electric vehicles market size trend (Research And Markets report, 2022).
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2 Literature review

(Greenspan and Cohen, 1999) identified several factors that
impact vehicle stock in the United States, including demographic
trends, economic conditions, consumer preferences, and vehicle
retirements. They suggested that a framework consisting of
distinct models would be beneficial for making long-term
macroeconomic predictions. Lian et al. (2018) develop a new
method for modeling and forecasting passenger car ownership
using symbolic regression, a machine-learning technique that can
automatically generate mathematical models from data. The study
by Mena-Oreja and Gozalvez, (2020) aimed to evaluate the
effectiveness of various deep-learning techniques for predicting
traffic using data from different sources such as sensors, social
media, and weather reports. The study compared the
performance of different models, including feedforward neural
networks, convolutional neural networks, and recurrent neural
networks. Besides the variables outlined in the study by Wang
et al. (2021), the forecasts also considered transportation carrying
capacity and policy measures. The research reviewed numerous
applicable models from various countries, but the majority of these
models were based on proprietary software simulations that were
implicit and relied heavily on data. The proliferation of EVs in the
market is characterized by strong policy and innovation
components, but it also involves the interplay and competitive
dynamics with internal combustion engine vehicles. Various
studies have focused on the consumer adoption model and
market diffusion of EVs, such as those by Li et al. (2017); Gnann
et al. (2022).

The Bass diffusion model was employed to analyze the market
adoption of durable goods and yielded positive outcomes (Bass,
2004). This model incorporates diverse internal and external
factors that affect the market adoption process into two
parameters, with population growth being influenced by both
the current number of adopters and the carrying capacity of the
market environment. The method utilizing the Bass model can be
categorized as the sales-based approach, as described in Gnann
et al. (2018), and is advantageous in situations where data
requirements are relatively low, particularly in regional or local
scenarios. In Massiani and Gohs, (2015) study, the authors
examined the effectiveness of the Bass model in forecasting the
stock of EVs and presented parameter estimation techniques.
Nevertheless, the study also recommended enhancing the
accuracy of market space estimation. Lee et al. (2019),
categorized early adopters of EVs in California into four groups
based on their income levels and developed a Bass model for each
cluster. However, the study acknowledged that it did not account
for repeat purchases or policy influences.

(Jahangiri and Rakha, 2015) Employed data obtained from
accelerometers and gyroscopes in cellphones to forecast
transportation modes and compared the predictive accuracy of
support vector machines (SVM), decision tree (DT) methods,
and k-nearest neighbors (KNN). The findings revealed that
random forest (RF) and SVM had superior performance but
encountered challenges in distinguishing between car mode and
bus mode. Hernandez et al. (2016) Utilized a decision tree
framework to derive comprehensible outcomes regarding the
influence of transportation user attitudes and perceptions on

their preferences. Huang et al. (2010) differentiated driving
conditions using speed and acceleration data and compared the
prediction accuracy of support vector machines (SVM), artificial
neural networks (ANN), linear and quadratic classifiers, and
K-means clustering. Sun et al. (2019) conducted an extensive
study where they compared the outcomes of Multinomial
Logistic Regression (MLR), Classification and Regression Trees
(CART), and Gradient Boosting Decision Trees (GBDT) to
forecast the range of EVs. The results indicated that GBDT
exhibited better optimization and error reduction compared to
the other two methods. (Goebel and Plötz, 2019) Conducted an
extensive comparative study where they estimated the utility factor
of hybrid vehicles (i.e., the ratio of miles traveled with electric energy
over the total miles traveled) using four different approaches:
Regression Tree (RT), RF, SVM, and ANN. The study concluded
that SVM and ANN provided the most accurate utility factor
estimations. Miconi and Dimitri, (2023) Analyze and predict the
EV market in Italy using machine learning techniques. The study
used data from various sources, including car registrations, charging
stations, and government policies, to develop a machine-learning
model that can predict EV adoption rates in Italy. A study aimed to
classify potential EV purchasers based on their socio-demographic
and attitudinal characteristics using a machine learning approach
was proposed by Bas et al. (2021). The study used data from a survey
conducted in Italy to develop a machine-learning model that can
predict the likelihood of someone purchasing an EV.

3 Proposed ensemble voting classifier
framework

Developing a machine learning model that can accurately
predict the population of EVs in different locations based on a
variety of factors, including demographic, economic, and
environmental data, is the goal of the problem statement for
the voting classifier for the EV population in different locations.
This model will be used to classify the population of EVs in
different locations. It is recommended that the model be trained
using a large dataset containing historical information on EV
sales and registrations, in addition to other pertinent data such as
information regarding the availability of charging stations,
financial incentives offered by the government, and public
transportation infrastructure (Hassib, et al., 2019; El-Kenawy
et al., 2022a).

The purpose of themodel is to provide insights into the adoption
and popularity of EVs in various regions and to assist policymakers
and industry stakeholders in making informed decisions regarding
the development of EV infrastructure, marketing and sales
strategies, and environmental policies. In addition, the model
aims to provide insights into the adoption and popularity of EVs
in different regions. The model should be able to reliably categorize
regions into multiple groups based on the expected EV population,
such as low, medium, and high adoption regions, and provide
explanations for the classification results. These categories could
include low, medium, and high adoption regions for EVs. In the end,
the model ought to be able to assist in hastening the transition to a
transportation system that is more environmentally friendly by
encouraging the expansion of the market for EVs.
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The primary challenge in this problem is to identify the most
relevant features for classification (Mazhar et al., 2023), as well as
select the most appropriate algorithm to classify EVs accurately.
Additionally, the availability and quality of data can also be a
challenge, as obtaining accurate and reliable data on EVs can be
difficult.

The proposed framework for the EV population voting classifier
(El-Kenawy, et al., 2022b) is shown in Figure 2 and consists of three
modules.

➢ Data Preprocessing Module:

The accuracy of the classification findings may be impacted by
factors such as noise, outliers, and uncertainties when using EV data
that was collected from a variety of sources. Therefore, one of the
most important steps in the proposed framework is the preparation
of the data (MA Hassan, et al., 2022). The steps of data cleansing,
feature selection, and feature extraction are included in the

preprocessing step of the data. Eliminating noise, outliers, and
inconsistencies from the raw data is an important part of the
data-cleaning process. Feature selection entails locating the
pertinent characteristics that are the most informative for the
purpose of classification. The process of extracting features from
raw data entails changing it into a representation that is more
understandable, and that captures the information that is
relevant for classification.

➢ Base Classifier Module:

The proposed system makes use of a number of distinct basic
classifiers in order to make the most of the variety of EV data
generated by a variety of sources. Individual classifiers are referred to
as base classifiers, and they are trained using a subset of the EV data.
The selection of base classifiers is an important stage in the proposed
framework. This step is important since it determines the variety of
the ensemble as well as the accuracy of the classification results.

FIGURE 2
Proposed framework for EVs population voting classification.
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Based on the characteristics of the EV data and the specifics of the
classification task at hand, many kinds of classifiers, such as decision
trees, random forests, and k-nearest neighbors, can be categorized as
base classifiers (Eid and Zaiki, 2022), Alkattan et al. (2023).

➢ Ensemble Voting Module:

In the proposed framework, the voting classifier incorporates the
predictions from several base classifier models that were generated
in the preceding module. It then predicts a class based on the base
classifier models’ highest chance of choosing that class as the output.
It merely adds up the results of every classifier that was passed into
the Voting Classifier and bases its prediction of the output class on
the class that received the most votes overall (S. K. Towfek, 2023).

4 Materials and methods

This section describes the materials and methods used in this
work to realize the recommended methodologies. Optimal results
can be attained using a combination of data preprocessing
techniques and meta-heuristic optimization techniques.

4.1 Datasets

The electric vehicle (EV) population data on data.gov is a dataset
that provides information about the number of EVs in the
United States from 2011 to 2020 (Data.gov, 2023). The dataset
provides a state-by-state breakdown of the number of registered
EVs, as well as the number of new EVs registered each year. This
dataset is maintained by the National Renewable Energy Laboratory
(NREL) and contains information on the number of EVs by state,
model, and year. It also includes information on the type of EV, such
as plug-in hybrid EVs and battery EVs.

4.2 Data preprocessing

This stage comprises cleaning, converting, and otherwise getting
raw data ready for analysis. When raw data are analyzed or modeled,
the results may be inaccurate or unreliable if they contain errors,
inconsistencies, or redundancies. This is because errors,
inconsistencies, and redundancies in the raw data are common.
Techniques for data preparation are utilized in order to handle these
concerns and to guarantee that the data are accurate, consistent, and
prepared for analysis. In this article, we will discuss the significance
of data preprocessing, the many methods that are utilized during
data preprocessing, as well as the impact that it has on the precision
and dependability of data-driven models. The procedure known as
“data cleaning” involves searching through the raw data for any
flaws or inconsistencies and then making any necessary corrections
to them. Handling missing numbers, fixing errors made during data
entry, addressing discrepancies, and deleting duplicate data points
are all part of this process. The process of cleaning data is an essential
step in ensuring that the data will be accurate and trustworthy when
it is used for modeling. The process of determining whether or not
data possess the desired qualities of integrity, correctness, and

consistency is known as data validation. This entails comparing
the data in question to previously set rules, restrictions, or business
logic in order to detect data that does not adhere to the standards
that are anticipated. Validating data helps to guarantee that the data
is reliable and complies with the data quality requirements that have
been established. The process of merging data obtained from a
variety of sources into a single, coherent dataset is referred to as data
integration.

4.3 Feature selection

Feature selection is a critical aspect of ourmachine learningmodel
that involves identifying the most relevant features or variables that
contribute to accurate predictions or classification. Various Feature
Selection techniques exist, such as filter methods, wrapper methods,
and embedded methods. Filter methods evaluate the features
independently of the model and rank them based on some criteria,
such as correlation, information gain, or chi-square test. Wrapper
methods use a subset of features and train a model using them. Then
they evaluate the model performance and compare it with other
subsets. Embedded methods perform feature selection as part of the
model training process, such as regularization or decision tree
algorithms. The goal of feature selection is to reduce the number
of candidate features to a smaller set that can create a more accurate
datamodel. A subset of features is represented by a vector of zeros and
ones, where zero means not selected, and one means selected. The
vector has the same length as the number of dimensions in the dataset.
A transfer function is used to calculate the probability of changing the
vector elements. A fitness function is also defined to evaluate how
good the chosen features are. This problem is a multi-objective
optimization problem (Edelmann et al., 2021) because it aims to
minimize the feature set size and maximize the data model
performance. The fitness function reflects the quality of the feature
set (Mafarja et al., 2018).

There are several ways to measure the effectiveness of a feature
selection method, depending on the type of data and the specific
goals of the analysis. In this work, four evaluation indicators are
used; average error, average select size, average fitness, and standard
deviation fitness.

The total number of iterations performed by the proposed
optimizer and other competing optimizers is denoted as M. The
best solution obtained at each run j is represented as Fj, and size (Fj)
denotes the size of the vector representing the best solution. N
represents the number of points in the test set. x∧

i and xi refer to the
predicted and actual values, respectively. σ is the standard deviation,
Fi is the value of the fitness function for any particle i, and Mean is
the mean value of the fitness function for all particles in the
population.

Average error is calculated through the total number of
iterations by taking the mean squared error between the actual
and predicted values of the target variable for each sample in the
testing dataset, summing them up, and dividing by the total number
of samples in the testing dataset. It is calculated according to the
following equation (El-Kenawy E. S. M. et al., 2022):

AE � 1
M

∑M
j�1

1
N

∑N
i�1
mse x∧

i − xi( ) (1)
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Average fitness size or the average number of features that are
selected by the feature selection method. This number is used as a
measure of how complex or simple the feature selection method is; a
lower average select size indicates a more parsimonious feature
selection method that selects fewer features, while a higher average
select size indicates a more comprehensive feature selection method
that selects more features (Khafaga et al., 2022).

Average Fitness Size � 1
M

∑M
i�1
size(Fi) (2)

Average fitness is employed as a criterion for evaluating the
standard of the population or the degree to which the algorithm has
converged. A population that is better overall or that converges more
quickly has a lower average fitness. A lower overall population or a
slower rate of convergence is the result of a greater average fitness
(Khafaga et al., 2022).

Average Fitness � 1
M

∑M
i�1
Fi (3)

Standard deviation fitness is utilized as an indicator of the
stability or robustness of the feature selection approach in terms
of its capacity to produce consistent results throughout the several
iterations. A greater standard deviation may imply more variability
or inconsistency in the performance of the feature selection method
equation, whereas a lower standard deviation may suggest that the
feature selection method is providing more consistent or stable
results. In contrast, a lower standard deviation may suggest that the
feature selection technique is delivering more consistent or stable
results (El-Kenawy E. S. M. et al., 2022).

σ �

�������������������
1

M − 1
∑M
i�1

Fi −Mean( )2
√√

(4)

A substantial amount of reliance is placed on quantitative
evaluation, data-driven decision-making, dimensionality reduction,
and model interpretation, which are all provided by statistics, in
order to select the features that are the most pertinent, improve the
performance of machine learning models, and increase their
interpretability. In this investigation, we compare the two ways of
feature selection using a one-way analysis of variance (ANOVA) test to
see whether or not there is a statistically significant difference between
them (Investopedia, 2022).

The analysis of variance (ANOVA) is widely used in the process
of feature selection. Its purpose is to evaluate the statistical
significance of numerous features in relation to the target
variable. An analysis of variance (ANOVA) can be used to
investigate the connection between each feature and the objective
variable by analyzing the differences in mean values of the target
variable that occur across different degrees or categories of the
feature. This approach computes a statistic known as the F-statistic,
which is a ratio of the variance between group means to the variation
within groups. The F-statistic is a ratio of the variance between
group means to the variance within groups. When the F-statistic is
higher, it indicates that there is a greater disparity between the
means of the groups that are being compared. This in turn suggests
that the characteristic that is being compared may be more essential
for predicting the variable that is being researched.

Comparing two related samples or sets of data requires the use of
yet another non-parametric statistical test. In order to evaluate
whether or not there is statistical significance, the Wilcoxon
signed-rank test compares the total ranks to a critical value that
is obtained from a reference distribution (usually a standard normal
distribution). This allows the researcher to determine whether there
is a statistically significant difference. With the help of this test, one
may assess whether there is difference that exists between paired
observations is statistically significant. Either the total number of
rankings or the number of positive ranks is used to calculate the test
statistics. Calculating a p-value allows one to determine the extent to
which an observed test statistic is statistically significant (Taheri and
Hesamian, 2013).

4.4 Basic classification models

The purpose of a classification model is to correctly categorize
data into a set of categories. These categories might be binary or
multi-class (Abdellhamid et al., 2023). Several types of
categorization schemes are employed here.

4.4.1 K-nearest neighbor (KNN)
To classify a new data point in the feature space, the k-nearest

neighbors algorithm looks for its nearest k neighbors and assigns a
label based on the most common label among them. The user
specifies an integer value for k. There are many ways to measure the
separation of data points, but the most common is the Euclidean
distance, which is found by applying the formula (Zhao et al., 2021).

EUCD �

��������������������
∑k
i�1

Train Fi − Test Fi( )2
√√

(5)

4.4.2 Decision tree (DT)
Decision trees are a common and adaptable machine-learning

method that may be used for both classification and regression. They
are well-known for their openness and the ease with which they may
be interpreted, qualities that lend them utility in fields such as data
mining and decision support systems. The nodes, branches, and
leaves that make up a decision tree are known as “decisions,”
“conditions,” and “outcomes,” respectively, while the “leaves” can
reflect final decisions or predictions (Jijo and Abdulazeez, 2021). In
order to design a decision tree, one must first recursively partition
the data based on informative characteristics. These features can be
chosen based on factors such as entropy or Gini impurity. In
addition to this, decision trees are able to manage big datasets
that contain high-dimensional feature spaces. Because they are able
to manage datasets with varying sample sizes, they are useful for a
wide variety of applications. The ability of decision trees to discover
decision rules even in the presence of noisy data points gives them
the ability to be resistant to noise and outliers.

4.4.3 Random forest (RF)
Random Forest integrates the results of numerous decision trees

to produce a model that is both more accurate and more robust
(Parmar et al., 2019). In the field of machine learning, it is a well-
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known algorithm that may be put to use for classification in addition
to regression analysis. By taking the average of the predictions made
by several different trees, random forest is able to overcome some of
the shortcomings of decision trees, such as overfitting. The creation
of an ensemble of decision trees, with each tree being trained on a
different random subset of the data as well as a random subset of the
features, is the fundamental idea behind a Random Forest. This adds
some unpredictability to the ensemble, which helps reduce the
likelihood of the model overfitting to the data while also
enhancing its ability to generalize. The final prediction is
obtained by combining the predictions of the different trees
through methods such as averaging (for regression) or voting
(for classification).

4.5 Binary BER optimization algorithm

Al-Biruni Earth Radius Optimization Algorithm, developed by the
Persian scholar Al-Biruni in the 11th century, is a significant
achievement in the field of mathematics. The mathematical
technique uses measurements of the horizon’s angle of elevation at
two known locations to calculate Earth’s radius. One of themost precise
techniques for calculating the Earth’s radius even by today’s standards,
Al-Biruni’s algorithm is a monument to his brilliance and scientific
prowess.

The first step of the algorithm is to choose two spots on the
surface of the earth that are separated by a specific distance. The use
of contemporary surveying instruments or a GPS enables exact
measurement of this distance. A clinometer or another device with a
comparable function is utilized at each place to determine the angle
of elevation of the horizon. After that, the disparity in elevation
angles between the two points is measured and determined. It is
possible to calculate the distance between the two places on the
surface of the Earth by making use of trigonometry. The final step in
the process is calculating the radius of the Earth based on this
distance and the disparity in the angles of elevation.

1- The algorithm starts by initializing a population of individuals
randomly distributed in the search space. Each individual
represents a potential solution to the optimization problem.

2- The algorithm then evaluates the fitness of each individual
using the objective function of the problem.

3- The algorithm determines which of the individuals has the best
overall solution and then appoints that individual as the leader
of the swarm.

4- The population is also segmented into subgroups according to
the fitness values of each individual, and the algorithm selects
the best local solution for each of those subgroups.

5- The algorithm then adjusts the position of each individual by
moving toward its own local best solution as well as the global
best solution while also incorporating some random factors.
The Al-Biruni approach, which involves determining the angle
that exists between two points on a sphere, is used to compute
the distance that separates an individual from the optimum
solution that can be found locally for that individual. The Al-
Biruni method allows for more effective exploration of the
search space around local solutions, hence reducing the risk of
being mired in a local optimal solution.

The algorithm repeats steps 3 to 5 until a termination criterion is
met, such as reaching a maximum number of iterations or achieving
a desired level of accuracy.

The BER is able to improve the effectiveness of the search by
dividing the populations who are conducting the search domain into
two groups that concentrate on either exploration or exploitation. In
order to strike a proper balance between opportunistic and
exploratory activities, the agents frequently rearrange the
members of the subgroups of agents that they belong to. The
individuals can be broken down into two groups: the exploration
group, which accounts for 70% of the total, and the exploitation
group, which accounts for 30%. Increasing the total number of
agents in either of the groups will result in an improvement in the
global average level of fitness of the groups. The exploration team
relies on mathematical approaches to locate new potentially fruitful
regions in the vicinity. This is accomplished by methodically
investigating each possibility until a solution that offers an
optimum level of fitness is identified source (El Sayed et al.,
2023). The goal of optimization algorithms is to discover the
optimal solution given a set of constraints. Because we are
utilizing BER, we are able to consider every individual in the
population to be an S vector. The optimization parameter or
characteristics d is represented by the size Sd of the search space
as well as the vector S, which has the values S=S1, S2, . . . . . .., Sd∈R.
A fitness function called F is going to be offered as a way to quantify
an individual’s success up to a given threshold. During these stages
of optimization, populations are evaluated to determine the value of
S* that results in the greatest improvement in fitness. The first thing
that is done is they take a selection at random from the total
population (solutions). Before BER can begin optimizing, it needs
to be provided with the fitness function, the population size, the
dimension, as well as the minimum and maximum allowed solution
sizes.

4.5.1 Exploration operation
The technique that identifies promising regions of the search

space and maintains the search past the local optimum is called
exploration; this is discussed in further depth below.With this tactic,
the lone explorer will look for additional interesting regions to
examine close by, bringing the group closer to the best possible
answer. Exploration requires not just locating the optimal answer
but also gauging its efficacy. Achieving this objective requires
researching available possibilities in one’s area and selecting the
one that best suits one’s fitness needs. This is done by using the
following equations in BER’s studies:

S t + 1( ) � S t( ) +D 2r2 − 1( ) (6)
D � r1 S t( ) − 1( ) (7)

Where S(t) is the solution vector at iteration t and D is the radius
of the circle inside which the search agent will explore for interesting
regions. The search agent will only look within this circle for
intriguing regions. The value of x can take on any value between
0 and 180, and the value of h is a scalar that can take on any value
between 0 and 2. By solving the equation, you can obtain values for
r1 and r2 that can serve as instances of coefficient vectors.

r � h
cos x( )

1 − cos x( ) (8)
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4.5.2 Exploitation operation
The group tasked with making the most of opportunities has an

obligation to strive toward enhancing the currently available
solutions. Those individuals who have put in the most effort to
acquire the highest fitness levels will be rewarded by the BER at the
conclusion of each cycle. In this section, we will talk about the two
alternative approaches that the BER took in order to accomplish its
exploitation objective. If we utilize the following equation to guide
our actions toward the most optimal answer, we can get closer to
finding a solution to the problem.

S t + 1( ) � r2 S t( ) +D( ) (9)
D � r3 L t( ) − S t( )( ) (10)

In order to carry out the process described above, the BERmakes
use of the equation that is presented below. Where S(t) is the
solution vector at iteration t, L(t) is the vector representing the
best possible solution, D is the vector representing the distance, and
r3 is a random vector that was produced using Eq. 8. It is responsible
for controlling the movement steps that are taken in order to explore
the space around the optimal solution. This particular solution is the

most intriguing of the ones that are feasible. This motivates some
people to look for answers that are close to the ideal by investigating
their possibilities.

S′ t + 1( ) � r S* t( ) + k( ) (11)
k � 1 + 2t2

Maxiter2
(12)

with the optimal solution denoted by Sp(t). You can choose the
optimal Sp implementation by comparing S(t+1) with S′(t+1). If
there has been no change in best fitness during the previous two
iterations, the solution will be updated using the following equation.

S t + 1( ) � kz2 − h
cosx

1 − cosx
(13)

where z is a random number in the range [0,1] and h is the hill’s
height.

The proposed bBER is shown in the proposed Algorithm 1.

1: Initialize the population S→
i (i = 1, d) with size d,

maximum iterations Maxiter; fitness function Fn

2: Initialize BER parameters

3: Set t = I (initialize counter)

4: Convert solution to binary [0 or 1]

5: Calculate the fitness function Fn for each S→
i

6: Find the best solution

7: while t≤Max iter, do

8: for each solution in the exploration group do

9: Heading toward the best solution

10: r � h cos(x)
1−cos(x)

11: D � r1(S(t) − 1)
12: S(t + 1) � S(t) + D(2r2 − 1)
13: end for

14: for each solution in the exploitation group do

15: Elitism of best Solution

16: D � r3(L(t) − S(t))
17: S(t + 1) � r2(S(t) + D)
18: Investigate the area around the best solution

19: k � 1 + 2t2

Maxiter2

20: S′(t + 1) � r(S*(t) + k)
21: Compare (17, 20) and select the best solution S*

22: if best fitness didn’t change from the previous 2

iterations, then

23: mutate the solution

24: S(t + 1) � kz2 − h cosx
1−cosx

25: end if

26: end for

27: Update fitness Fn" for each S

28: end while

29: Return the best solution S*

Algorithm 1. Pseudo Code of the Proposed bBER

4.6 Ensemble learning

Using many predictors or classifiers together to improve
prediction accuracy is known as “Ensemble Learning.” To get the
most accurate results, it is best to use multiple, unrelated classifiers.

TABLE 1 Configuration parameters of the BER and competing optimization
algorithms.

Algorithm Parameter Values

BER Agents 10

Iterations 80

Repetitions 20

Exploration percentage 70

k (decreases from 2 to 0) 1

Mutation probability 0.5

η ∈ [0, 1]

G.A. Cross over 0.9

Mutation ratio 0.1

Selection mechanism Roulette wheel

Iterations 80

Agents 10

PSO Acceleration constants [2,2]

Inertia Wmax, Wmin [0.6, 0.9]

Particles 10

Iterations 80

GWO a 2 to 0

Iterations 80

Wolves 10

WOA r [0, 1]

Iterations 80

Whales 10

a 2 to 0
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Using various learning algorithms is one approach. The most widely
used approach is the majority-vote classifier, which takes the
aggregated predictions from many classifiers and returns the
winning class. This method, known as a hard-voting classifier,
raises the possibility that various classifiers within an ensemble
will generate different kinds of errors. The Random Forest classifier,
which employs decision trees trained via the “bagging” method, is
one example of an approach that uses the same methods but with
various subsets of data to produce diversity. Each predictor in
bagging is trained with the same learning algorithm but on
independently selected subsets of the full training data. Due to
the soft-computing nature of all methods in this domain, this
improves the overall accuracy of the results. The AdaBoost
ensemble classifier uses a weighted sum of the results from

individual weak learners or other learning algorithms to arrive at
a final boosted classifier result.

5 Simulation results

Extensive experiments are performed to demonstrate the
efficacy and superiority of the suggested BER optimization
algorithm and stacking ensemble model. Windows 10 and
Python 3.9 running at 3.00 GHz on an Intel(R) Core (T.M.)
i5 CPU are used for the trials (Manufacturer: Intel Corporation,
California, United States). Experiments were conducted in a case
study setting, with results comparing the bBER method’s output to
that of baseline models’ output on a dataset, including information

TABLE 2 Evaluation of the proposed feature selection method using the EV population dataset.

bBER bWAO bGWO bPSO bFA bGA JAYA FHO

Average error 0.3057 0.3765 0.3429 0.3767 0.3751 0.3565 0.323933 0.344422

Average select size 0.2785 0.6419 0.4785 0.4785 0.513 0.4209 0.44042 0.68042

Average fitness 0.3889 0.4113 0.4051 0.4035 0.4554 0.4165 0.5729 0.59234

Best fitness 0.2907 0.3754 0.3254 0.3838 0.3741 0.3198 0.45506 0.4967

Worst fitness 0.3892 0.4515 0.3923 0.4515 0.4717 0.4349 0.57326 0.57698

Standard deviation 0.2112 0.2175 0.2159 0.2153 0.2521 0.2175 0.35966 0.3653

Processing time (S) 12.35 15.20 14.50 15.25 14.75 13.90 18.45 19.80

TABLE 3 ANOVA of the proposed feature selection method based on EV population dataset.

SS DF MS F (DFn, DFd) p-value

Treatment (between columns) 0.03786 7 0.005409 F (7, 64) = 68.65 p < 0.0001

Residual (within columns) 0.005043 64 0.00007879

Total 0.04291 71

TABLE 4 Wilcoxon of the proposed feature selection method based on the EV population dataset.

bBER bJAYA bFHO bWAO bGWO bPSO bFA bGA

Theoretical median 0 0 0 0 0 0 0 0

Actual median 0.3057 0.3822 0.3444 0.3765 0.3429 0.3767 0.3751 0.3565

Number of values 9 9 9 9 9 9 9 9

Sum of signed ranks (W) 45 45 45 45 45 45 45 45

Sum of positive ranks 45 45 45 45 45 45 45 45

Sum of negative ranks 0 0 0 0 0 0 0 0

p-value (two tailed) 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact

p-value summary ** ** ** ** ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes

Discrepancy 0.3057 0.3822 0.3444 0.3765 0.3429 0.3767 0.3751 0.3565

Frontiers in Energy Research frontiersin.org10

Saeed et al. 10.3389/fenrg.2023.1221032

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1221032


about a population of EVs. Table 1 displays the BER and alternative
optimization techniques’ configuration parameters.

In this section, we will conduct an analysis and evaluation of the
strategy that has been suggested for classifying EV populations. The
evaluation is carried out with the help of the proposed algorithm for
feature selection and the proposed stacked ensemble model that is

bBER-based optimized. The results that were recorded will be
presented together with a description according to three stages.

5.1 First stage: feature selection results

The EV population dataset is used to conduct an evaluation of
the suggested strategy for feature selection. The results of the
measurements are summarized in Table 2. When taking into
account all of the evaluation criteria of feature selection discussed
in Section 4.3, the bBER technique that was offered produced the
best possible results, as can be seen in the table that follows.

The exploration and exploitation capabilities of the proposed
bBER optimization algorithm stand out as significant reasons that
contribute to its superiority over a variety of current optimization
algorithms, such as bJAYA, bFHO, bWOA, bGWO, bPSO, bFA, and
bGA. The capacity of the algorithm to find a harmonic balance
between exploration and exploitation is what separates it from other
algorithms. It is a successful option for addressing complicated
optimization problems in various disciplines. In optimization,
“exploration” refers to investigating multiple parts of the solution
space to locate possible solutions. The algorithm’s exploratory ability
helps it uncover new and different solutions, which is essential for
efficiently handling complicated optimization tasks. On the other
hand, after exploring areas in the search space, the next step, known
as “exploitation,” entails honing and enhancing existing solutions.
The BER optimization method exhibits outstanding exploitation

FIGURE 3
Average error of the results achieved by the proposed feature
selection method compared to other methods based on the EV
population dataset.

FIGURE 4
Visualizing the performance of the proposed feature selection method applied to EV population dataset.
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capabilities by utilizing strategies such as gradient-based
optimization, local search, and adjustable learning rates. It
provides fine-tuning for solutions, ensuring they successfully
converge towards optimal answers. Because it can exploit its
discoveries, the algorithm can make the most of the valuable
knowledge obtained during the exploration phase.

Two different statistical tests, the ANOVA test, and the
Wilcoxon signed-rank test, are utilized to investigate the
statistical differences as well as the significance of the suggested
feature selection. These tests are predicated on two hypotheses,
which are designated by the symbols H0 and H1, respectively. Tables
3, 4 respectively illustrate the findings that were obtained from these
testing. The findings that are shown in these tables point to the
statistical relevance of the technique that was proposed in the
process of picking the optimal set of features that can improve
the results of EV population classification.

In addition, the plot that is presented in Figure 3 shows an
indication of the average inaccuracy of the results achieved by the
suggested manner of selecting features in contrast to the other seven
methods of selecting features. The fact that the suggested method for
feature selection was successful in achieving the lowest average error
value in this plot is evidence of both its use and its excellence as a
method for doing feature selection.

On the other hand, the results of testing the suggested
approach for feature selection on the dataset are depicted by
the plots in Figure 4, which provide an illustration of the
method’s performance. These graphs make it possible to
observe the insignificant residual error that exists despite the
reasonable fitting that exists between the expected and real
residuals. In addition to this, the heatmap demonstrates that
the proposed method has a considerable influence in comparison
to the other feature selection methods.

5.2 Second stage: EV population
classification results

Performance measurements for the classification module
include accuracy, sensitivity, and specificity. Other performance
indicators include NPV, F-score, and Precision (PPV). The true-
positive (TP) value, the true-negative (TN) value, the false-negative
(FN) value, and the false-positive (FP) value are all abbreviated as
such here. FN. and FP. stand for “false negative” and “false positive,”
respectively. The value of TP indicates that it has been successfully
predicted that an instance belongs to the positive class, FP indicates

that the predicted class is in the positive class, but it does not (the
prediction is false), and TN indicates that it is correctly predicted
that an instance belongs to the negative class. The following
measurements define each of the indicators.

➢ Accuracy: Assesses the ability of the model to properly
recognize full cases, regardless of whether the cases are
positive or negative and may be formed as

Accuracy � TP + TN

TP + TN + FP + FN
(14)

➢ Sensitivity: It is often referred to as the “true positive rate”
(TPR). The capability of the positive case is computed by.

Sensitivity � TP

TP + FN
(15)

➢ Specificity: This is the real negative rate, otherwise known as
selectivity. It gains the capacity to locate cases in which there is no
match. It is calculated as follows:

Specificity � TN

TN + FP
(16)

➢ Precision: It is the value of making correct predictions. It
controls the proportion of genuine positives relative to the total
number of positive results. It is computed as follows:

PPV � TP

TP + FP
(17)

➢Negative Predictive Value (NPV): It controls the proportion of
real negatives relative to other negative values.

NPV � TN

TN + FN
(18)

➢ F-score: It calculates the average harmonic value of the
precision and sensitivity measurements.

F − score � 2
PPV × TPR

PPV + TPR
(19)

Table 5 presents the various classification models’ respective
performance metrics. According to the findings, the accuracy of the
KNN model is 91.22%, which is higher than that of the D.T. model
(89.43%), the R.F. model (88.24%), the Logistic Regression model
(85.71%), the SGD classifier (85.05%), and the Gaussian NB model

TABLE 5 Comparison of the performance metrics for the EV population classification.

Classification model Accuracy Sensitivity (TRP) Specificity (TNP) p-value (PPV) Nvalue (NPV) F-score

KNN 0.912162162 0.943396226 0.894736842 0.878333333 0.965909091 0.884955752

DT 0.894308943 0.943396226 0.857142857 0.85632111 0.952380952 0.884955752

RF 0.882352941 0.961538462 0.8 0.845322223 0.952380952 0.892857143

Logistic Regression 0.857142857 0.943396226 0.736842105 0.833223333 0.903225806 0.884955752

SGD Classifier 0.850574713 0.943396226 0.705882353 0.817896533 0.888888889 0.884955752

Gaussian NB 0.839506173 0.943396226 0.642857143 0.81322222 0.857142857 0.884955752
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(83.95%). The R.F. model’s performance is superior to that of other
models, as evidenced by its F-score of 89.28%. In comparison to
other models, the KNN model has a specificity that is 89.47% more
accurate. According to p-value, the findings and performance of all
of the models were the same. Because of its sensitivity, the R.F.
model performs more effectively than the other models, with a score
of 96.15 percent. In terms of an overall performance measure for the
models, the greatest accuracy that can be reached for the
classification of the EV dataset that was tested in this research is
91.22% by the KNN model. This level of accuracy is regarded as

adequate in light of the significance of the task at hand. Based on its
impressive performance, it is going to be utilized in the following
scenario for the purpose of feature selection and balancing.

5.3 Third stage: EV population voting
classifier

The previous stage results provide further evidence of the
viability of the strategy that was recommended. In addition, the

TABLE 6 Statistical analysis of the prediction results achieved by the proposed optimized stacked ensemble model applied to the EV population dataset.

BER JAYA FHO WAO GWO PSO FA GA

Number of values 9 9 9 9 9 9 9 9

Minimum 0.9658 0.9313 0.9298 0.9156 0.9311 0.9299 0.9383 0.9276

Maximum 0.9758 0.9513 0.9498 0.9456 0.9411 0.9499 0.9483 0.9476

Range 0.01 0.02 0.02 0.03 0.01 0.02 0.01 0.02

Mean 0.9669 0.948 0.9454 0.9412 0.9389 0.9399 0.9405 0.9376

Std. Deviation 0.003333 0.007071 0.007265 0.01014 0.00441 0.005 0.00441 0.005

Std. Error of Mean 0.001111 0.002357 0.002422 0.003379 0.00147 0.001667 0.00147 0.001667

Harmonic mean 0.9669 0.9479 0.9453 0.9411 0.9389 0.9399 0.9405 0.9376

Skewness 3 −2.121 −1.501 −2.506 −1.62 0 1.62 0

Kurtosis 9 4 1.467 6.337 0.7347 4 0.7347 4

TABLE 7 ANOVA test applied to the prediction results achieved by the proposed optimized ensemble model applied to the EV population dataset.

SS DF MS F (DFn, DFd) p-value

Treatment (between columns) 0.005776 7 0.000825 F (7, 64) = 21.60 p < 0.0001

Residual (within columns) 0.002444 64 3.82E-05

Total 0.00822 71

TABLE 8 Wilcoxon test applied the prediction results achieved by the proposed optimized ensemble model applied to the EV population dataset.

BER JAYA FHO WAO GWO PSO FA GA

Theoretical median 0 0 0 0 0 0 0 0

Actual median 0.9658 0.9513 0.9498 0.9456 0.9411 0.9399 0.9383 0.9376

Number of values 9 9 9 9 9 9 9 9

Sum of signed ranks (W) 45 45 45 45 45 45 45 45

Sum of positive ranks 45 45 45 45 45 45 45 45

Sum of negative ranks 0 0 0 0 0 0 0 0

p-value (two-tailed) 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact

p-value summary ** ** ** ** ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes

Discrepancy 0.9658 0.9513 0.9498 0.9456 0.9411 0.9399 0.9383 0.9376

Frontiers in Energy Research frontiersin.org13

Saeed et al. 10.3389/fenrg.2023.1221032

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1221032


results of the classification are subjected to statistical
examination, the findings of which are shown in Table 6. The
outcomes of the statistical analysis are compared with those of
the other seven optimization algorithms in the following table.
The findings of the research and the comparison demonstrate
that the optimized stacked ensemble that was proposed is
preferable.

In addition, a further series of tests are carried out in order to
investigate the statistical difference and significance of the suggested

optimized stacked ensemble. This package contains the ANOVA test
as well as the Wilcoxon signed-rank test. The outcomes of these
examinations are shown in Tables 7, 8, respectively. According to
Table 7, the p-value for the proposed technique is lower than 0.0001,
which indicates that there is a statistical difference between the
proposed method and the other methods that were included in the
experiments that were carried out. In a similar vein, the p-value that
is recorded in the data that are presented in Table 8 validates the
statistical difference as well as the significance of the suggested
method.

On the other hand, the results of the EV classification are
analyzed visually using the plots that are presented in Figure 5.
The performance of the proposed method in classifying EV
population is shown to be quite encouraging by these plots. Plots
such as residual, homoscedasticity, quartile quartile (Q.Q.), and
heatmap are included here. The residual and the homoscedasticity
reveal that there is only a little amount of error when classifying the
EV population, while the Q.Q. and heatmap plots show that there is
robust prediction.

Figures 6, 7 illustrate the accuracy values produced by the
suggested approach in comparison to the other seven methods
and the histogram, respectively. This comparison was done so
that the robustness of the proposed optimized stacked
ensemble could be demonstrated in a manner that was easily
understood. The robustness of the suggested method is
demonstrated by the fact that it reaches the highest possible
accuracy value.

FIGURE 5
Visualizing the results of EV population classification.

FIGURE 6
Visualizing the accuracy values of the proposed BER optimization
algorithm.
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6 Conclusion

This paper utilizes EVs data registered throughWashington State to
extract and quantify parameters of EV population features. The binary
Al-Biruni Earth Radius (BER) metaheuristic search optimization
algorithm is employed to optimize a novel voting ensemble model
consisting of two levels a pre-classification stage, and a classification stage.

In the pre-classification stage, binary BER is used in conjunction
with the KNN classifier to select the best possible subset of features for a
variety of challenges by achieving a balance between the exploration and
exploitation of the data. Using the results of pre-classification, amajority
voting ensemble learning classification method based on three
individual classifiers KNN, D.T., and R.F. is trained and tested.
Multiple individual classifiers are utilized for learning, and a
majority voting strategy is employed to combine the outputs of the
three individual classifiers, enabling the classification of EV population.

A series of experiments are carried out based on seven different
optimization approaches and three different classification models in
terms of EV population datasets in order to demonstrate that the
methodology that has been suggested is preferable. The results of the
experiments demonstrated that the proposed method is superior,
effective, and generalizable when used to classification the EV population.

However, statistical tests were run to examine the statistical
dissimilarity and significance of the proposed method. The observed
data corroborated the predicted outcomes. Future directions for the
suggested method may include assessing it against other large-scale
datasets to highlight its generalizability.
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