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Wind power forecasting is pivotal in optimizing renewable energy generation
and grid stability. This paper presents a groundbreaking optimization algorithm
to enhance wind power forecasting through an improved al-Biruni Earth
radius (BER) metaheuristic optimization algorithm. The BER algorithm, based
on stochastic fractal search (SFS) principles, has been refined and optimized to
achieve superior accuracy in wind power prediction. The proposed algorithm is
denoted by BERSFS and is used in an ensemble model’s feature selection and
optimization to boost prediction accuracy. In the experiments, the first scenario
covers the proposed binary BERSFS algorithm’s feature selection capabilities for
the dataset under test, while the second scenario demonstrates the algorithm’s
regression capabilities. The BERSFS algorithm is investigated and compared to
state-of-the-art algorithms of BER, SFS, particle swarm optimization, gray wolf
optimizer, andwhale optimization algorithm. The proposed optimizing ensemble
BERSFS-based model is also compared to the basic models of long short-
term memory, bidirectional long short-term memory, gated recurrent unit, and
the k-nearest neighbor ensemble model. The statistical investigation utilized
Wilcoxon’s rank-sum and analysis of variance tests to investigate the robustness
of the created BERSFS-based model. The achieved results and analysis confirm
the effectiveness and superiority of the proposed approach in wind power
forecasting.
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1 Introduction

Growing concerns about the environment and climate change,
along with the rapidly increasing capacity of intermittent renewable
energy sources, have made forecasting renewable energy generation
and, especially, wind energy a vital technology worldwide. The
ability to accurately predict power generation fromwind farms plays
an important role in the world’s transition to a future powered
by sustainable energy (Mujeeb et al., 2019; González Sopeña et al.,
2023). By the end of the first quarter of 2022, the global
installed wind capacity had reached 837 GW, according to the
most recent annual report of the Global Wind Energy Council
(GWEC) (Global wind report, 2022; Hakami et al., 2022). Wind is
an unpredictable and non-constant resource that can experience
large swings in performance even over relatively short time periods.
Therefore, it is challenging to predict in advance how much wind
power can be relied upon at any particular time. Therefore, its
potential energy output must be predicted. Accurate wind power
forecasting is essential for the smooth incorporation of wind energy
into the utilities (Hamid and Alotaibi, 2022a; Cheng et al., 2022;
Mahmoud et al., 2022).

There has been a recent uptick in the quest to develop accurate
algorithms for forecasting wind power (Ouyang et al., 2019).
Physical-based methods, statistical methods, artificial intelligence
(AI)-based machine-learning algorithms, and hybrid approaches
are the common types (Maldonado-Correa et al., 2020; Hamid and
Alotaibi, 2022b). In physical methods, after using atmospheric
motion equations to anticipate the development of meteorological
readings, physical models would use these estimated readings to
make forecasts of wind power (Ding et al., 2018). Several physical
methods such as Prediktor, Previento, LocalPred, and eWinduse two
steps to estimate wind power using numerical weather estimation
and physical models. First, wind speed must be anticipated, and
then, it must be converted into wind power (Han et al., 2019).
However, designing a physical model can be time consuming and
expensive, leading to subpar forecast accuracy at the regional scale
(Tascikaraoglu and Uzunoglu, 2014).

The data-based statistical models immediately generate
functional dependencies from the data to construct a model that
describes the links between wind power and other input variables
(Bouyeddou et al., 2021), in contrast to the physical techniques
based on relatively complex differential equations. Several statistical
models, including the autoregressive (AR) model, moving average
(MA) model, autoregressive moving average (ARMA) model, and
autoregressive integrated moving average (ARIMA) model, provide
prediction value as a function of historical wind power (Eissa et al.,
2018; Eid et al., 2022). In the work of Rajagopalan and Santoso
(2009), the ARMA model was used to predict hourly wind power.
Accuracy drops off after 1 hour, but it still does a decent job at
predicting the future. These models are straightforward to develop
and implement with minimal efforts. It is important to note,
however, that while standard time series models (such as ARMA
and its derivatives) can achieve a satisfying performance when wind
power data show regular changes, the forecast inaccuracy is blatant
when the wind power time series shows irregular variations.

One of the recent research-led solutions that generates high-
accuracy forecasts for wind farm assets is the use of AI techniques
(Couto and Estanqueiro, 2022; Diab and Abdelhamid, 2022).

Through advanced analytics, sophisticated instrumentation, and
weather data, it helps utility operators increase the integration of
wind energy into the grid while improving operational efficiencies,
flexibility, and reliability (Cheng et al., 2021; Maray et al., 2022).
Hybrid approaches combine several advantages of two or more AI
techniques. The AI-based machine-learning techniques and hybrid
approaches will be reviewed in Section 1.2.

1.1 Categories of forecasting-based time
methods

Based on the needs of the power system, forecasts can be broken
down into four distinct time frames: the long term (more than a
month ahead), medium term (week, month ahead), short term (day
ahead) (Dobschinski et al., 2017), and very short term (few seconds
to 30 min ahead) (Soman et al., 2010; Hussah Nasser AlEisa et al.,
2022). Figure 1 summarizes the categorization of forecasting
methods by time horizon and some of their applications. According
to Soman et al. (2010), there are a variety of methods for predicting
wind power, each with its own unique set of characteristics and a
track record of success in a variety of forecasting environments and
time frames.

1.2 AI-based wind power forecasting
techniques

Approaches based on AI have distinct advantages over physical
and statistical approaches. AI does not rely on explicit mathematical
expressions, and it can learn, organize, and adapt on its own. These
techniques utilize historical data and various learning methods to
train the network (Jung and Broadwater, 2014). Artificial neural
networks (ANNs) and fuzzy logic are commonly used in wind
power forecasting. An ANN can model complex relationships and
has shown superior results compared to other methods (Jung
and Broadwater, 2014; Abdel Samee et al., 2022). Researchers have
developed prognostic tools based on ANN modeling to improve
system-wide monitoring and management of renewable energy
systems (Moustris et al., 2016). Data mining techniques, such as
ANN-generated models, have been proven effective for short-term
and long-term wind power prediction (Mabel and Fernandez, 2008;
Kusiak et al., 2009). Additionally, an ANN can be used to estimate
wind speed at a target site based on the correlation with another site
(Bechrakis and Sparis, 2004).

Other techniques, such as the Markov method improved
by support vector machines (SVMs) and lagged ensemble
machine learning, have also been proposed for wind power
prediction (Yang et al., 2015; Suárez-Cetrulo et al., 2022). Sparse
vector autoregression and mathematical morphology-based local
predictors have been employed for short-term probabilistic
forecasting (Dowell and Pinson, 2015; Wu et al., 2015). Machine-
learning models like random forest regression, support vector
regression, k-nearest neighbors, and LASSO regression have
been used with daily wind speed data to predict wind power
(Demolli et al., 2019; Saber, 2022). Hybrid approaches, combining
multiple models, have been effective in increasing prediction
accuracy. For example, stacking ensemble learning based on
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FIGURE 1
Categorization of forecasting methods by time horizon and some of their applications.

variational mode decomposition and singular spectrum analysis
has been used for short-term wind speed forecasting (da Silva et al.,
2022). Long short-term memory (LSTM) models trained with
heap-based optimizers have shown notable improvements in
prediction performance (Ewees et al., 2022). Hybrid approaches
using orthogonal tests and SVMs have also demonstrated improved
forecasting accuracy (Liu et al., 2017; El-Kenawy et al., 2022a).
Additionally, combining the least squares support vector machine
with the gravitational search algorithmhas resulted inmore accurate
short-term wind power forecasts (Yuan et al., 2015).

Variousmachine-learning algorithms, including ANNs, support
vector regression, regression trees, and random forest, have been
compared forwind power prediction, with support vector regression
showing promising results (Buturache and Stancu, 2021; Sami
Khafaga et al., 2022). Missing data in wind power prediction have
been addressed using multiple imputation techniques based on
the expectation maximization algorithm (Liu et al., 2018). Deep-
learning frameworks, such as bidirectional gated recurrent units and
LSTM, have been employed to automatically model wind speed and
power (Xiaoyun et al., 2016; Deng et al., 2019). Adaptive wavelet
neural networks have been used to deconstruct wind time series
and improve wind power prediction (Bhaskar and Singh, 2012;
Shams, 2022). Other methods, such as correntropy LSTM neural
networks with improved variational mode decomposition, high-
order fuzzy cognitivemaps, andGranger causality testing, have been
proposed for wind power forecasting (Pei et al., 2022; Qiao et al.,
2022; Zhou et al., 2022; Lu et al., 2023). These approaches leverage
advanced techniques, optimize models, and extract meaningful
features from raw time-series data, resulting in more precise wind
power forecasts.

Zhu et al. (2022) presented a hybrid machine-learning
technique. First, they used the complete ensemble empirical mode
decomposition with an adaptive noise approach to break down the
time series into its constituent parts. Second, in order to predict
the wind power residuals, a temporal convolutional network-based
residual modification model is built, and highly correlated variables
are chosen as the model’s input features. The results proved effective
in the ability to predict wind power compared to other algorithms.

In the work of Al-qaness et al. (2022), an adaptive neuro-
fuzzy inference system (ANFIS) was proposed to deal with
wind power forecasting. In order to avoid the algorithm’s early
convergence on local optima, the authors developed a new version
of the Marine Predator Algorithm (MPA) that makes use of
extra mutation operators. They put it to use in fine-tuning the
ANFIS’s setup settings. The suggested MPA-ANFIS model was
evaluated using information gathered from French wind turbines.
They compared their suggested method to previously published
algorithms and found that using the MPA-ANFIS improved
wind power forecast accuracy. Table 1 summarizes the most
important AI-based machine-learning techniques for wind power
forecasting.

The following is a condensed list of the most important
contributions that can be drawn from this body of work:

• Methods based on machine learning are made available for
forecasting wind power
• It has been proposed to use an enhanced version of the

al-Biruni Earth radius optimization-based stochastic fractal
search (BERSFS) algorithm
• A binary BERSFS (bBERSFS) algorithm is proposed for feature

selection capabilities from the dataset under test
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TABLE 1 AI-basedmachine-learning techniques for wind power forecasting in the literature.

Ref. Technique used Advantage Disadvantage

Moustris et al. (2016) ANN Adequate prognosis of wind prediction by a
wind turbine in a specific location 8 h in
advance

The model needs many input samples for
reliable results

Kusiak et al. (2009) ANN Longer prediction horizons do not enhance the
model error

Unknown wind farms and weather forecast
grid sites. Seasonal performance was untested

Mabel and Fernandez (2008) ANN Simple problem formulation Data overfitting

Bechrakis and Sparis (2004) ANN Improves target station’s forecasting model Each turbine’s spatial correlation model’s
parameters must be tuned, difficult, and
impractical

Yang et al. (2015) SVM Same data are used for training and operation Forecast prediction errors may hinder training

Dowell and Pinson (2015) SVA Accurately forecasting short-term weather at
many wind farms

Large coefficients may cause noisy estimates,
unstable forecasts

Wu et al. (2015) Mathematical morphology local predictor More accurate and stable forecast Sampling rate causes delay convergence

Demolli et al. (2019) kNN It can be utilized before wind farms are built in
unknown locations

Static model does not consider historical data

Suárez-Cetrulo et al. (2022) Lagged ensemble machine learning Correct forecast results Hard to learn, an incorrect choicemight reduce
forecast accuracy

da Silva et al. (2022) Ensemble learning model + SSA Dual decomposition simplified learning Model is time and space-consuming

Ewees et al. (2022) HBO + LSTM More accurate forecasting results Sometimes it faces a convergence speed
problem

Liu et al. (2017) Orthogonal test + SVM Fewer test criteria reduce implementation time Large data inputs may increase complexity

Yuan et al. (2015) Least squares SVM + GSA Simple problem formulation Last iterations converge slowly and get stuck in
local minima

Buturache and Stancu (2021) ANN + SVR High generalization and prediction accuracy Data points with more characteristics than
training data samples may underperform the
model

Liu et al. (2018) GPR + multiple imputation Users incorporatemodel shape parameters and
knowledge by choosing kernel functions

High-dimensional spaces lose efficiency

Deng et al. (2019) ANN + bidirectional gated unit Improve model training Slow convergence

Xiaoyun et al. (2016) LSTM + PCA Longer sequence improves dataset accuracy Overfitting data increase training memory

Bhaskar and Singh (2012) Wavelet + ANN Time-frequency localization Computationally intensive

[49, 50] LSTM + VMD Superior efficiency across a wide range of
sample rates and noise

Depends on predetermined factors, especially
mode number

Qiao et al. (2022) VMD + fuzzy cognitive map Model clarity, ease of use, and domain
flexibility

Increasing complexity of the systems

Pei et al. (2022) VMD + Granger causality testing Simplicity and fast convergence Time-series nonstationarity and nonlinearity

Zhu et al. (2022) Temporal convolutional network + RNN More efficient in terms of computation time Model evaluation may need greater data
storage

Al-qaness et al. (2022) Adaptive neuro-fuzzy inference system +
MPA

Improve memory capacity Dimensionality and computational expense

• In order to improve the accuracy of predictions made using
the tested dataset, an optimized ensemble BERSFS-based
regression model is being developed
• A comparison of the outcomes produced by various algorithms

is carried out in order to identify the one that yields the best
results
• The Wilcoxon rank-sum test and the analysis of variance

(ANOVA) test are utilized in order to examine whether or not
the bBERSFS algorithm and the optimizing ensemble BERSFS-
based model have a statistically significant relationship

• The BERSFS-based regression model can be adapted and tested
for a variety of datasets because of this method’s flexibility

The remaining parts of this paper are structured as follows.
Section 2 provides an overview of the problem statement.
Mathematical formulation for wind power forecasting using the
al-Biruni Earth radius (BER) model is described in detail in
Section 3.Section 4 will discuss some experimental simulations
and some cases for comparison. Finally, this paper is concluded in
Section 5.
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TABLE 2 Computational complexity of the BERSFS algorithm.

No. Operation Complexity

1 Initialization of the BERSFS algorithm O(1)

2 Calculating objective function Fn for each agent Si O(n)

3 Finding best agent S* O(n)

4 Updating positions to head toward the best solution O(Tmax × n)

5 Updating position elitism of the best solution O(Tmax × n)

6 Updating position investigating area around the best solution O(Tmax × n)

7 Mutating solution O(Tmax)

8 Updating the best solution O(Tmax × n)

9 Updating objective function O(Tmax × n)

10 Updating BERSFS parameters O(Tmax)

11 Obtaining best agent S* O(Tmax)

12 Obtaining best agent S* O(1)

TABLE 3 Configuration parameters of the BERSFS algorithm.

Parameter(s) Value(s)

# Agents 10

# Iterations 80

# Repetitions 20

Dimension # features

Η ∈ [0, 1]

η′ ∈ [0, 1]

Mutation probability 0.5

Exploration percentage 70

K (decreases from 2 to 0) 1

α of Fn 0.99

β of Fn 0.01

2 Problem statement

If the balance between energy generation and consumption
is not kept, there is a risk of disruptions in power quality and
supply, which can result in considerable financial loss.The operating
security of the power network is dependent on the reliability of the
power generation. If wind power predictions are accurate, it will
be possible to maximize the contribution of wind energy to the
nation’s electrical grid. It was demonstrated that an improvement of
approximately 30% in wind power output could be achieved with
an increase of 10% in prediction accuracy (Ackermann, 2000). As
a result, the development of a wind power prediction model that is
very accurate is of utmost importance from a pragmatic standpoint.

The amount of electricity that can be generated by a wind
turbine is directly proportional to the average wind speed in the
area, which, in turn, is influenced by factors such as the topography
of the surrounding area, climate, and changing of the seasons
(Soman et al., 2010).

TABLE 4 Compared algorithms’ configuration parameters.

Algorithm Parameter(s) Value(s)

BER Mutation probability 0.5

Exploration percentage 70

K (decreases from 2 to 0) 1

SFS η,η′ ∈ [0, 1]

PSO Acceleration constants [2, 2]

Inertia Wmax, Wmin [0.6, 0.9]

# Particles 10

# Iterations 80

GWO A 2 to 0

# Iterations 80

# Wolves 10

WOA R [0, 1]

# Iterations 80

# Whales 10

A 2 to 0

The amount of available and actual wind power that moves
across the rotor blades per unit of sweep is defined as

Pav (v) =
1
2
ρAv3, (1)

Pactual (v) =
1
2
ρAv3CP, (2)

where Pav(v) is the ideal available power, Pactual(v) is the practical
wind power, CP is the turbine power conversion coefficient, and
ρ(t) is air density in (kg/m3), v is the wind velocity without rotor
interference (m/s), and A is the swept area (m2).

The tip angle, the design of the blades, and the relationship
between wind speed and rotor speed are the factors that come into
play when calculating the Cp for a certain turbine. The maximum
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power coefficient, often known as the Betz limit, is 0.593 (Bontempo
and Manna, 2022). However, it is not possible to obtain this value
in actual practice. It was not possible to obtain the power coefficient
under a variety of different operating situations.The number 0.5 was
utilized for the majority of the practical computations (Bontempo
and Manna, 2022). One of the most influential aspects of the wind
turbine’s output is the air density. Air density, temperature, and
barometric pressure at the location are related according to

ρ = P
RT

e(−
gh
RT
), (3)

where P is the barometric pressure in (Pa), T is the air temperature
in (K), R is the specific gas constant for dry air equal to 287.058
(J/(kg.K)), g is the gravity of Earth, 9.81 (m/s2), and h is the hub
height above the ground level in (m) (Olaofe, 2014).

3 Materials and methods

3.1 al-Biruni Earth radius algorithm

The original BER optimizes by dividing the population into
exploration and exploitation groups. Exploitative and exploratory
actions are balanced by changing the agent subgroup makeup.
Exploration comprises 70% of the population and exploitation 30%.
Increased agent numbers in the exploration and exploitation groups
have increased their worldwide average fitness levels. Mathematics
helps the exploring team find promising regions nearby. Repeatedly
seeking for a fitter option accomplishes this (El-kenawy et al., 2023).

Optimization algorithms discover the best solution given
constraints. BER represents population members as S vectors.
The vector S = S1,S2,… ,Sd ∈ R is the search space size and the
optimization parameter or feature d. The fitness function F is
recommended for assessing an individual’s performance up to a
point. Populations are optimized for a fitness-optimal vector S*. We
start with a random population sample (solutions). BER optimizes
with the fitness function, lower and higher limits for each solution,
dimension, and population size. BER optimization Algorithm 1 is
visualized.

This method will be used by the group’s lone explorer to search
for promising new areas to investigate in the location they are now
in order to get closer to the greatest feasible solution. To achieve this
goal, one needs to investigate the many possibilities offered in the
neighborhood and select the alternative that is superior to the others
concerning the impact on one’s physical wellbeing.The research that
BER has carried out makes use of the equations as follows to achieve
the equations as follows to achieve this goal:

S (t+ 1) = S (t) +D (2r2 − 1) , (4)

where the solution vector at iteration t is represented as S(t), and the
search agent will search a circle with a diameter of D = r1(S(t) − 1)
to look for promising spots. h is an integer that is arbitrarily selected
from the range [0,2], and 0 < x ≤ 180. Examples of coefficient vectors
include r1 and r2, and their values can be determined using the
equation r = h cos(x)

1−cos(x)
.

The group in charge of making the most of opportunities needs
to make the solutions that are already in a better place. . After

each round, the BER figures out which participants have reached
the highest levels of fitness and awards them accordingly. The BER
achieves its goal of exploitation by using two differentmethods, both
of which are explained here. We can get closer to the best solution
by using the following equation to move in the right direction.

S (t+ 1) = r2 (S (t) +D) ,D = r3 (L (t) − S (t)) , (5)

where r3 is a random vector produced using the equation r =
h cos(x)

1−cos(x)
, which controls the progression of steps toward the ideal

solution, and L(t) is the best solution vector, S(t) is the solution
vector at iteration t, and D is the distance vector.

Examining the area around the best solution: themost intriguing
prospective solution is the area around the best answer (leader). As
a result, some people look for methods to improve situations by
considering alternatives that are fairly similar to the optimal choice.
The process outlined previously is carried out by the BER using the
following equation:

S′ (t+ 1) = r(S* (t) + k) ,k = 1+ 2× t2

Max2
iter
, (6)

where S*(t) represents the best solution.This best solution is selected
by comparing S(t+ 1) and S′(t+ 1). If the best fitness has not changed
during the course of the preceding two iterations, the solution will
be altered in accordance with the following equation:

S (t+ 1) = k⋆ z2 − h
cos (x)

1− cos (x)
, (7)

where z represents a random value within [0,1].
The BER chooses the best option for the next cycle to assure

quality. Elitism’s efficiency may cause multi-modal functions to
converge too soon. The BER can provide excellent exploration
capabilities by employing a mutational approach and evaluating all
members of the exploration group. Exploration lets the BER delay
convergence. Algorithm 1 has the BER pseudo-code. We start by
giving the BER population size, mutation rate, and iterations. Then,
the BER divides agents into exploratory and exploitative groups.
The BER technique automatically adjusts group sizes as it iteratively
finds the optimal response. When iterating, the BER will reorder
responses to ensure diversity and depth. An exploration group
solution may go to the exploitation group in the next iteration. The
leader cannot be changed throughout the BER’s exclusive selection
process.

3.2 Improved al-Biruni Earth radius
algorithm

The time and accuracy of conventional fractals can drive a
metaheuristic approach for random fractals. A particle can have
electrical potential energy, diffuse, make random particles with the
original particle’s energy, and keep the best particles and discard
the rest in each generation. The fractal search method uses these
three guidelines to solve a problem. Stochastic fractal search (SFS)
is a fractal paradigm-based method (El-Kenawy et al., 2020; El-
kenawy et al., 2022; Saber and Abotaleb, 2022). SFS can overcome
fractal search constraints by using three update mechanisms:
diffusion, first, and second. SFS diffusion involves Gaussian walks
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1: Initialize BER population Si(i = 1,2,…,d) with

size d, iterations Tmax, fitness function Fn,

t = 1, and parameters of BER

2: Calculate fitness function Fn for each agent Si

3: Find the best solution as S*

4: while t ≤ Tmax do

5:   for (i = 1:i < n1 +1) do

6:     Update r1 = h1
cos(x)
1−cos(x)

, r2 = h2
cos(x)
1−cos(x)

7:     Move toward the best solution by updating

positions as in Eq. 4

8:   end for

9:   for (i = 1:i < n2 +1) do

10:      Update r = h cos(x)
1−cos(x)

, r3 = h3
cos(x)
1−cos(x)

11:      Elitism of the best solution by updating

positions as in Eq. 5

12:      Investigating area around the best

solution by updating positions as in

Eq. 6

13:      Select best solution S* by comparing

S(t+1) and S′(t+1)

14:      if the best fitness is the same for the

last two iterations, then

15:         Mutate solution as in Eq. 7

16:      end if

17:    end for

18:    Update fitness function Fn for each agent Si

19:    Find best solution as S*

20:    Update parameters of BER and t = t+1

21: end while

22: Return S*

Algorithm 1. BER algorithm

around the optimal solution (best particle) (El-Kenawy et al., 2022b;
Khafaga et al., 2022; Oubelaid et al., 2023).

During the growth process, a random walk is performed using a
technique based on the Gaussian distribution. This is performed in
order to make it possible for the SFS’s diffusion mechanism to result
in the generation of additional particles. During the course of the
diffusion process, a list of walks was compiled in accordance with
the best possible solution, S*(t). The following is the formula that
may be used to calculate the expression:

S′* (t+ 1) = Gaussian(μS* ,σ) + (η× S* (t) − η′ × Pi) , (8)

where the symbol S′*(t+ 1) denotes the updated best solution. The η
and η′ parameters are made up of random values in the range [0, 1].
The position of the ith point in the group of points surrounding the
point is the value denoted by Pi. The values of μS* and σ are similar
to |S*| and |Pi − S

*|, respectively, since there are fewer generations
around the best solution. This increases the capacity for exploration
in the suggested BERSFS, which is based on the diffusion process of
the SFS algorithm. As a result, the proposed BERSFS is able to locate
the best solution in a more expedient manner.

1: Initialize BERSFS population Si(i = 1,2,…,d) with

size d, iterations Tmax, fitness function Fn,

t = 1, parameters of BERSFS

2: Calculate the fitness function Fn for each

agent Si

3: Find best solution as S*

4: while t ≤ Tmax do

5:   if (randBERSFS > 0.5) then

6:      for (i = 1:i < n1 +1) do

7:        Update r1 = h1
cos(x)
1−cos(x)

, r2 = h2
cos(x)
1−cos(x)

8:        Calculate D = r1(S(t) −1)

9:        Move toward the best solution by

updating positions as S(t+1) =

S(t) +D(2r2 −1)

10:      end for

11:      for (i = 1:i < n2 +1) do

12:        Update r = h cos(x)
1−cos(x)

, r3 = h3
cos(x)
1−cos(x)

13:        Calculate D = r3(L(t) −S(t))

14:        Elitism of the best solution by

updating positions as S(t+1) = r2(S(t) +D)

15:        Calculate k = 1+ 2×t2

Max2
iter

16:        Investigating area around the best

solution by updating positions as

S′(t+1) = r(S*(t) +k)

17:        Select best solution S* by comparing

S(t+1) and S′(t+1)

18:        if the best fitness is the same for the

last two iterations, then

19:            Mutate solution as S(t+1) =

k*z2 −h cos(x)
1−cos(x)

20:        end if

21:      end for

22:   else

23:     for (i = 1:i < n+1) do

24:       Calculate updated best solution as

S’*(t+1) = Gaussian(μS* ,σ) + (η×S
*(t) −η′ ×Pi)

25:      end for

26:    end if

27:    Update fitness function Fn for each agent Si

28:    Find best solution as S*

29:    Update parameters of BERSFS, t = t+1

30: end while

31: Return S*

Algorithm 2. Proposed BERSFS algorithm.

The suggested BERSFS algorithm is explained in greater detail in
Algorithm 2.The BERSFS algorithm eliminates the negative aspects
of theBERand SFS algorithmswhilemaximizing the positive aspects
of both in order to generate the response that is best suited for the
entire globe. The first thing that has to be carried out in order to
complete the technique is to determine the initial positions of d
preset agents by utilizing the notation Si(i = 1,2,…,d). In addition
to this, it specifies the parameters for both the BER method and
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FIGURE 2
Heatmap of the wind power forecasting dataset.

the SFS algorithm, as well as the maximum number of iterations
that are permissible throughout the execution process (denoted
by Tmax). The term randBERSFS refers to a value that is completely
unpredictable and can range from 0 to 1. It lies somewhere in
between. If the random variable randBERSFS is greater than 0.5, the
BERSFS algorithm will consult the BER equations to figure out how
the positions of the agents should be modified. The SFS equations
will be employed by the BERSFS algorithm to guide the process of
updating the positions of the agents if the random variable for the
BERSFS algorithm is less than 0.5.

An expression of the computational complexity presented by the
BERSFSmethod in this research can be seen in the following section.
One definition of the complexity is shown in Table 2, which includes
iterations Tmax and agents n. According to the preliminary research
conducted on the BERSFS method, the level of computational
complexity is determined to be O(Tmax × n). This information
is presented in this table, where the variable, n, in parentheses
refers to the input length and Tmax refers to the max number of
iterations.

4 Experimental results

The findings of this investigation are thoroughly explained in
this section. There are two different situations for the experiments.

TABLE 5 Feature selection evaluation criteria.

Metric Formula

Best fitness minMi=1S
*
i

 Worst fitness maxMi=1S
*
i

 Average error 1
M
∑Mj=1

1
N
∑Ni=1mse(V̂i −Vi)

 Average fitness 1
M
∑Mi=1S

*
i

 Average fitness size 1
M
∑Mi=1size(S

*
i )

 Standard deviation √ 1
M−1
∑Mi=1(S

*
i −Mean)2

The first scenario covers the proposed bBERSFS algorithm’s
feature selection capabilities for the dataset under test, while
the second scenario demonstrates the algorithm’s regression
capabilities. The BERSFS algorithm is investigated and compared
to state-of-the-art algorithms of BER (El-kenawy et al., 2023),
SFS (El-Kenawy et al., 2020), particle swarm optimization (PSO)
(Bello et al., 2007), gray wolf optimizer (GWO) (El-Kenawy et al.,
2020), and whale optimization algorithm (WOA) (Eid et al., 2021).
The BERSFS algorithm configuration of all parameters utilized
in the experiment is presented in Table 3, while the comparison
algorithm setup is presented in Table 4 (Shazly and Khodadadi,
2023).
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TABLE 6 Proposed bBERSFS versus other optimization algorithms.

bBERSFS bBER bSFS bPSO bGWO bWOA

Average error 0.3806 0.3937 0.3991 0.3908 0.4068 0.4054

Average select size 0.5809 0.6743 0.6826 0.6826 0.6910 0.6826

Average fitness 0.5169 0.5649 0.5701 0.5620 0.5778 0.5764

Best fitness 0.4822 0.5014 0.4918 0.4918 0.5110 0.5110

Worst fitness 0.6240 0.6072 0.6360 0.6360 0.6744 0.7802

Standard deviation fitness 0.0359 0.0387 0.0499 0.0476 0.0503 0.0739

Processing time (s) 5.623 6.446 7.006 6.566 6.93 7.242

TABLE 7 Description of the proposed bBERSFS and other optimization
algorithms’average error results.

bBERSFS bBER bSFS bPSO bGWO bWOA

Number of values 12 12 12 12 12 12

Minimum 0.3806 0.3737 0.3691 0.3708 0.4068 0.4054

25% percentile 0.3806 0.3937 0.3916 0.3908 0.4068 0.4054

Median 0.3806 0.3937 0.3991 0.3908 0.4068 0.4054

75% percentile 0.3806 0.3937 0.3991 0.3908 0.4143 0.4129

Maximum 0.3861 0.3937 0.3991 0.3931 0.4368 0.4537

Range 0.0055 0.02 0.03 0.0223 0.03 0.0483

Mean 0.3811 0.3912 0.3941 0.3885 0.4118 0.4119

Std. deviation 0.001588 0.006216 0.01 0.006334 0.01 0.01453

Std. error of mean 0.000458 0.001794 0.002887 0.001829 0.002887 0.004194

Sum 4.574 4.694 4.729 4.662 4.942 4.943

4.1 Dataset

Meteorological data play a crucial role in predicting the wind
power output from wind turbines. Various meteorological data are
typically included in the data used for short-term wind power
prediction in our study.

• Wind speed: It is the most critical meteorological parameter for
wind power prediction as it represents the velocity at which
the wind is blowing and is typically measured at hub height
or at various levels of the turbine. Wind speed data provide
valuable information about the available kinetic energy that can
be converted into electricity.
• Wind direction: It indicates the compass direction from which

the wind is blowing and helps determine the alignment of
the wind turbine with respect to the incoming wind. Wind
direction is essential in optimizing the turbine’s performance
and understanding potential wake effects caused by nearby
turbines.
• Ambient temperature: Temperature affects air density, which,

in turn, impacts the wind turbine’s power output. Higher
temperatures decrease air density, leading to lower power
generation. Temperature data are crucial for adjusting the
turbine’s performance models accurately.

FIGURE 3
Box plot based on the average error for the proposed bBERSFS
algorithm and bBER, bSFS, bPSOm bGWO, and bWOA algorithms.

• Air pressure: It affects wind speed and can indicate weather
patterns thatmight impactwindpower generation. It is typically
measured at the surface and can be used to infer the presence of
high- or low-pressure systems.
• Humidity: Humidity itself might not have a direct impact on

wind power prediction but it can indirectly affect atmospheric
stability, which influences wind speed and direction.

Renewable sources of energy continue to be one of the most
crucial issues to address for a more sustainable future. It is possible
that we may fulfill all of our power needs by harnessing the wind,
which is a renewable source of energy. Forecasting the power
generated by wind farms will be of great assistance as their number
continues to grow. The tested data are regarding a specific windmill
(Wind power forecasting, 2022). The purpose of using it was to
forecast the amount of wind power that could be produced by
the windmill over the course of the next 2 weeks. Consequently,
a method for the long-term forecasting of wind is required. The
dataset includes a variety of aspects related to weather, turbines, and
rotors. Data collection began in January 2018 and continued until
March of 2020. The readings have been obtained at regular intervals
of 10 min. The heatmap that is presented in Figure 2 can be used to
gain insight into the manner in which the variables are connected to
one another.

The wind farm installed capacity is 50 MW and consists of 33
single wind turbine units/1,500 kW turbines, each with 1.5 MW
nameplate capacity.
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FIGURE 4
Quantile–quantile and residual plots and heatmap for the presented bBERSFS and the methods.

TABLE 8 Results of the ANOVA test for the proposed algorithm versus the compared algorithms.

SS DF MS F (DFn, DFd) p-Value

Treatment (between columns) 0.00967 5 0.001934 F (5, 66) = 23.57 p < 0.0001

Residual (within columns) 0.005416 66 8.21E-05 - -

Total 0.01509 71 - - -

• Output data description:The output variable is the active power
that could be generated from the wind turbine every 10 min for
the next 15 days according to different input variables. It is the
power that is available for useful work and is measured in units
of W kW (kW).
• Input data description
• Wind speed: Wind speed refers to the rate at which the

wind is flowing past a specific point. It is typically measured
in units of meters per second (m/s). Wind speed is a
fundamental parameter for wind power forecasting as it
directly affects the amount of kinetic energy available in the
wind, which is essential for estimating the potential power
generation of a wind turbine.
• Wind direction: Wind direction refers to the compass

direction from which the wind is blowing. It is typically

measured in degrees, with 0° indicating a north wind, 90°
indicating an east wind, 180° indicating a south wind, and
270° indicating a west wind. Wind direction is a critical
parameter for wind power forecasting as it helps determine
the alignment of the wind turbine and the efficiency of
power generation.
• Ambient temperature: Ambient temperature refers to the

temperature of the surrounding environment or air inwhich
a wind turbine operates. It is an important parameter for
assessing the performance and efficiency of the turbine and
is typically measured in degree Celsius (°C).
• Bearing shaft temperature: Bearing shaft temperature refers

to the temperature of the shaft or axle that supports the
rotating parts of the wind turbine, such as the rotor or
gearbox.Monitoring the bearing shaft temperature is crucial
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TABLE 9 Comparison of the proposed algorithm and the algorithms that were compared using theWilcoxon signed-rank test.

bBERSFS bBER bSFS bPSO bGWO bWOA

Theoretical median 0 0 0 0 0 0

Actual median 0.3806 0.3937 0.3991 0.3908 0.4068 0.4054

Number of values 12 12 12 12 12 12

Sum of signed ranks (W) 78 78 78 78 78 78

Sum of positive ranks 78 78 78 78 78 78

Sum of negative ranks 0 0 0 0 0 0

p-value (two-tailed) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Discrepancy 0.3806 0.3937 0.3991 0.3908 0.4068 0.4054

95% confidence interval 0.3806– 0.3806 0.3937–0.3937 0.3891–0.3991 0.3908–0.3908 0.4068–0.4168 0.4054–0.4154

Actual confidence level 96.14 96.14 96.14 96.14 96.14 96.14

for ensuring the proper lubrication and functioning of the
bearings and is typically measured in degree Celsius (°C).
• Blade pitch angle: Blade pitch angle refers to the angle at

which the individual blades of a wind turbine are positioned
in relation to the oncomingwind. It is a crucial parameter for
controlling the power output and aerodynamic performance
of the turbine. Each blade can have its own pitch angle, and
it is typically measured in degrees.
• Control box temperature: Control box temperature refers to

the temperature inside the control or electrical cabinet of
a wind turbine. The control box houses various electronic
components and systems responsible for controlling and
monitoring the turbine’s operation. Monitoring the control
box temperature helps ensure the proper functioning and
reliability of the electrical systems and is typically measured
in degree Celsius (°C).
• Gearbox bearing temperature: Gearbox bearing

temperature refers to the temperature of the bearings within
the gearbox of a wind turbine. The gearbox is responsible
for increasing the rotational speed of the rotor to generate
electricity. Monitoring the gearbox bearing temperature is
crucial for detecting any potential issues with the lubrication
or overheating of the bearings and is typically measured in
degree Celsius (°C).
• Gearbox oil temperature: Gearbox oil temperature refers to

the temperature of the lubricating oil used in the gearbox of a
wind turbine.The gearbox oil plays a critical role in reducing
friction andwear between the gears and othermoving parts.
Monitoring the gearbox oil temperature helps ensure the
proper viscosity and functioning of the oil and is typically
measured in degree Celsius (°C).
• Generator RPM: Generator RPM (revolutions per minute)

refers to the rotational speed at which the generator of
a wind turbine is operating. The generator converts the
mechanical energy from the rotor into electrical energy.
Monitoring the generator RPM helps assess the turbine’s
operating speed and is typically measured in RPM.
• Generator winding temperature: Generator winding

temperature refers to the temperature of the electrical

TABLE 10 Prediction evaluation criteria.

Metric Formula

RMSE √ 1
N
∑Nn=1(V̂n −Vn)

2

 RRMSE RMSE
∑Nn=1V̂n
× 100

 MAE 1
N
∑Nn=1|V̂n −Vn|

 MBE 1
N
∑Nn=1(V̂n −Vn)

 NSE 1− ∑
N
n=1(Vn−V̂n)

2

∑Nn=1(Vn−
̄̂Vn)

2

 WI 1− ∑Nn=1|V̂n−Vn|

∑Nn=1|Vn− ̄Vn|+|V̂n−
̄̂Vn|

 R2 1− ∑Nn=1(Vn−V̂n)
2

∑Nn=1(∑
N
n=1 Vn)−Vn)

2

 R ∑Nn=1(V̂n−
̄̂Vn)(Vn− ̄Vn)

√(∑Nn=1(V̂n−
̄̂Vn)

2)(∑Nn=1(Vn− ̄Vn)
2)

windings within the generator of a wind turbine. The
windings are responsible for producing the electrical output.
Monitoring the generator winding temperature is crucial for
preventing overheating and ensuring the reliable operation
of the generator. The temperature is typically measured in
degree Celsius (°C).
• Hub temperature: Hub temperature refers to the

temperature at the central hub of the wind turbine,
where the rotor blades are attached. Monitoring the
hub temperature is important for assessing the thermal
conditions and potential heat accumulation in the critical
hub area and is typically measured in degree Celsius (°C).
• Main box temperature: Main box temperature refers to the

temperature inside the main electrical cabinet or enclosure
of a wind turbine. This cabinet houses the main electrical
components and systems of the turbine. Monitoring the
main box temperature helps ensure the proper functioning
and reliability of the electrical systems.
• Nacelle position: The nacelle position refers to the

orientation or azimuth angle of the wind turbine nacelle.
The nacelle is the housing structure at the top of the
wind turbine tower that contains the generator, gearbox,
and other components. The nacelle position is typically
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TABLE 11 Proposed optimizing ensemble BERSFSmodel versus basic models and kNN ensemblemodel results.

RMSE MAE MBE r R2 RRMSE NSE WI

LSTM 0.06647 0.04814 −0.00406 0.960,517 0.922,593 17.78947 0.921,835 0.886,877

BILSTM 0.021668 0.01418 −0.00127 0.995,189 0.990,401 6.95515 0.990,345 0.962,989

GRU 0.010377 0.00701 0.000157 0.999,066 0.99813 2.777,235 0.998,095 0.983,527

kNN ensemble 0.007743 0.004837 −0.0005 0.999,463 0.998,927 2.021239 0.998,912 0.988,501

Optimizing ensemble BERSFS 0.002399 0.001802 7.96E-05 0.999,761 0.999,522 0.838,491 0.999,522 0.992,269

TABLE 12 Description of the proposed BERSFS-basedmodel and other
models’RMSE results.

BERSFS BER SFS PSO GWO WOA

Number of values 12 12 12 12 12 12

Minimum 0.002199 0.003688 0.004088 0.004636 0.004756 0.005112

25% percentile 0.002399 0.003788 0.004188 0.004736 0.004856 0.005237

Median 0.002399 0.003788 0.004188 0.004736 0.004956 0.005312

75% percentile 0.002399 0.003788 0.004263 0.004736 0.004956 0.005312

Maximum 0.002399 0.00388 0.004488 0.004836 0.004956 0.005712

Range 0.0002 0.000192 0.0004 0.0002 0.0002 0.0006

Mean 0.002374 0.003787 0.00423 0.004736 0.004914 0.005337

Std. deviation 6.22E-05 4.1E-05 0.000108 4.26E-05 6.69E-05 0.000166

Std. error of mean 1.79E-05 1.18E-05 3.13E-05 1.23E-05 1.93E-05 4.79E-05

Sum 0.02849 0.04545 0.05076 0.05683 0.05897 0.06404

FIGURE 5
Box plot of the proposed BERSFS-based model and BER, SFS, PSO,
GWO, and WOA-based models based on the RMSE.

measured in degrees and is an important parameter for
wind power forecasting as it helps determine the direction
from which the wind is blowing.
• Rotor RPM: Rotor RPM (revolutions per minute) refers to

the rotational speed at which the rotor of a wind turbine
is spinning. The rotor is the part of the wind turbine that
captures the kinetic energy from the wind and converts it
into mechanical energy. Monitoring the rotor revolutions
per minute is essential for wind power forecasting as it
directly affects the power output of the turbine.

• Turbine status: Turbine status refers to the operational
condition of awind turbine, which can include various states
such as running, stopped, faulted, or maintenance mode.
Monitoring the turbine status is crucial for wind power
forecasting as it helps determine whether the turbine is
available and able to generate power or if there are any issues
affecting its performance.

4.2 Feature selection scenario

The binary implementation of the BERSFS algorithm that was
proposed is what is used to choose features from the dataset that was
tested. The first scenario includes a discussion of the results of the
feature selection performed by the BERSFS algorithm given in this
paper. The binary BERSFS algorithm is investigated and compared
to bBER, bSFS, bPSO, bGWO, and bWOA.

In the bBERSFS method, the quality of a solution is evaluated
with the help of the objective equation, which is denoted by Fn. Fn
is utilized in the equation that is provided in the following section
for a classifier’s error rate, Err, a number of selected features, v, and
a number of missing features, V.

Fn = αErr+ β
|v|
|V|
, (9)

where beta = 1− alpha indicates the significance of the supplied
feature to the population, and alpha falls in the range [0,1]. If it
is possible to give a subset of features that is capable of creating
a low classification error rate, then the method can be considered
adequate. The kNN technique is an easy classification method that
is commonly used. The utilization of the kNN classifier in this
method ensures that the characteristics that were selected are of high
quality. The shortest distance between the query instance and the
training examples is the only factor that is utilized in the process
of determining classifiers. No model for the kNN is utilized in this
experiment.

The suggested feature selectionmethod’s effectiveness is assessed
using the criteria stated in Table 5. The number of runs of the
proposed and other competing optimizers is also listed in this table
asM. The best solution at run number j is represented by the symbol
S*
j , where size(S*

j ) denotes the size of the best solution vector.The test
set’s total number of points was indicated byN.The terms V̂n andVn
denote the expected and actual values, respectively.

Table 6 contains the suggested and contrasted algorithms’
feature selection findings. These results are based on 20 runs and
80 iterations for 10 agents, as detailed in Table 3. The performance
of the bBERSFS method that was provided may be seen through
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FIGURE 6
Histogram of the RMSE.

FIGURE 7
QQ plots, residual plots, and heatmap for both the presented BERSFS-based model and the models that were compared.

TABLE 13 Results of the ANOVA test for the proposed optimized ensemble BERSFS and the comparedmodels.

SS DF MS F (DFn, DFd) p-value

Treatment (between columns) 6.71E-05 5 1.34E-05 F (5, 66) = 1,576 p < 0.0001

Residual (within columns) 5.62E-07 66 8.51E-09 - -

Total 6.77E-05 71 - - -
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TABLE 14 Comparison of the proposed optimized ensemble BERSFS and the comparedmodels that were compared using theWilcoxon signed-rank test.

BERSFS BER SFS PSO GWO WOA

Theoretical median 0 0 0 0 0 0

Actual median 0.002399 0.003788 0.004188 0.004736 0.004956 0.005312

Number of values 12 12 12 12 12 12

Sum of signed ranks (W) 78 78 78 78 78 78

Sum of positive ranks 78 78 78 78 78 78

Sum of negative ranks 0 0 0 0 0 0

p-value (two-tailed) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Exact or estimate? Exact Exact Exact Exact Exact Exact

Discrepancy 0.002399 0.003788 0.004188 0.004736 0.004956 0.005312

95% confidence interval 0.002399–0.002399 0.003788–0.003788 0.004188–0.004288 0.004736–0.004736 0.004856–0.004956 0.005212–0.005312

Actual confidence level 96.14 96.14 96.14 96.14 96.14 96.14

the minimum average error of 0.3806 and the standard deviation of
0.0359 with the minimum processing time of 5.623 s. The following
best algorithms are bPSO with 0.3908, bBER with 0.3937, bSFS with
0.3991, and then, bWOA with 0.4054, which achieve the lowest
minimal average error in the process of feature selection for the
data that have been examined. The bGWO algorithm is the worst
when it comes to feature selection. It has an error rate of 0.4068
on average. However, the bWOA algorithm is the worst in the
processing time of 7.242 s. Table 7 shows the description, including
the minimum, median, maximum, and mean average error, of
the proposed bBERSFS and other optimization algorithms’ average
error results over 12 runs.

The box plot based on the average error for the proposed
bBERSFS algorithm and bBER, bSFS, bPSO, bGWO, and bWOA
algorithms is shown in Figure 3. The figure shows the quality of
the bBERSFS algorithm using the objective function mentioned in
Eq (9). Figure 4 displays the quantile–quantile (QQ) plots, residual
plots, andheatmap for both the presented bBERSFS and themethods
that were compared for the data that were examined.

The purpose of this statistical analysis is to establish howwell the
suggested bBERSFS algorithmperforms in terms of the average error
by employing a one-way ANOVA and Wilcoxon signed-rank tests.
When determining the p-values for a comparison of the suggested
method to other algorithms, theWilcoxon test is the one that is used.
With a p-value of less than 0.05, this statistical test can determine
whether or not there is a significant difference between the outcomes
of the proposed algorithm and those of other algorithms. The
ANOVA test was also carried out in order to find out whether or not
there is a statistically significant difference between the suggested
algorithm and the other algorithms that were examined. The results
of the ANOVA test for the proposed algorithm versus the algorithms
that were compared are shown in Table 8, and Table 9 also contains a
comparison of the proposed algorithm and the algorithms that were
compared using the Wilcoxon signed-rank test. In order to ensure
that the comparisons are accurate, the statistical analysis is carried
out using 12 separate iterations of each of the algorithms that are
being presented and evaluated.

4.3 Regression scenario

The experiments’ second scenario discusses the regression
results of the proposed optimizing ensemble BERSFS model versus
basic models and kNN ensemble model results for 12 runs and 80
iterations using 10 agents as mentioned in Table 4. The basic models
are LSTM, bidirectional LSTM (BILSTM), and gated recurrent unit
(GRU).

Supplementary measures are utilized in order to assess the
effectiveness of the regression models that are utilized in order to
forecast wind power. These metrics consist of root-mean-squared
error (RMSE), mean absolute error (MAE), mean bias error (MBE),
Pearson’s correlation coefficient (r), coefficient of determination
(R2), relative root-mean-squared error (RRMSE), Nash–Sutcliffe
efficiency (NSE), and determine agreement (WI).WithN parameter
as the total number of observations in the dataset, the (V̂n) and
(Vn) are the nth estimated and observed bandwidth, respectively,
and ( ̄̂Vn) and (Vn) are the arithmetic means of the estimated and
observed values. Table 10 shows the prediction evaluation criteria.

Table 11 shows the proposed optimizing ensemble BERSFS-
based model versus basic models and kNN ensemble model
results. The presented BERSFS-based model achieved an RMSE of
0.00239878, which is the best result compared to the kNN ensemble
with anRMSEof 0.007743064. In contrast, LSTMachieved anRMSE
of 0.066469754, which is the worst result.

The regression results of the proposed BERSFS-based model
are also compared with the BER, SFS, WOA, GWO, and PSO-
based models to show the performance of the presented algorithm.
Table 12 shows the description, including the minimum, median,
maximum, and mean average error, of the proposed BERSFS-based
model and other models’ RMSE results over 12 runs.

The box plot based on the RMSE for the proposed BERSFS-
based model and BER, SFS, PSO, GWO, and WOA-based
models is shown in Figure 5. The figure shows the quality
of the optimized ensemble BERSFS-based model using the
objective function mentioned in Eq. 9. The histogram of the
RMSE for the presented BERSFS-based model and other models
is shown in Figure 6. Figure 7 displays the QQ plots, residual
plots, and heatmap for both the presented BERSFS-based model

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1220085
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Saeed et al. 10.3389/fenrg.2023.1220085

FIGURE 8
Convergence time of the proposed feature selection algorithm.

FIGURE 9
Convergence time of the proposed optimization algorithm.

and the models that were compared for the data that were
examined. These figures show that the presented optimized
ensemble BERSFS-based model can perform better than compared
models.

The results of the ANOVA test for the proposed optimized
ensemble BERSFS and the compared models are shown in Table 13,
and Table 14 also contains a comparison of the proposed optimized
ensemble BERSFS and the compared models using the Wilcoxon
signed-rank test. In order to ensure that the comparisons are
accurate, the statistical analysis is carried out using 12 separate

iterations of each of the algorithms that are being presented and
evaluated.

4.4 Time profile

The proposed bBERSFS feature selection algorithm’s
convergence time, shown in Figure 8, has been thoroughly
compared to that of a number of other feature selection techniques,
including bBER, bFSF, bPSO, bGWO, and bWOA. The bBERSFS
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technique is regularly shown to converge far more quickly than the
other approaches in these evaluations. Convergence times for bBER
have been demonstrated to be relatively slow. The bFSF approach
is also plagued by slow convergence. However, when it comes to
feature selection, bPSO, bGWO, and bWOA have all shown to be
effective. However, they regularly have slower convergence rates
than bBERSFS. Combining the best features of BER and SFS, the
bBERSFS algorithm is a hybrid method. Combining the strengths
of these two approaches allows bBERSFS to reach optimum feature
subsets more quickly. The algorithm’s expanded exploration and
exploitation capabilities allow for a more efficient search of the
feature space, resulting in a shorter convergence time. The shorter
time it takes for bBERSFS to converge is directly translated into
substantial time savings while working with feature selection.
Researchers and practitionersmay save time and energy by receiving
their findings more quickly, allowing them to devote their attention
where it ismost needed. bBERSFS is scalable because of its shortened
convergence time, which makes it an excellent choice for feature
selection in huge datasets. The suggested bBERSFS algorithm
has been shown to achieve faster convergence times than bBER,
bFSF, bPSO, bGWO, and bWOA, among other feature selection
approaches. These results highlight the promise of bBERSFS as a
useful resource in feature selection applications, which will help
academics and practitioners save time and effort in their pursuit of
optimum feature subsets.

In addition, the convergence of the proposed optimization
algorithm is depicted in Figure 9. In this figure, it can also be
noted that the proposed optimization algorithm converges faster
than the other optimization methods. These results confirm the
superiority of the propose approach in terms of the convergence
time.

For the adopted dataset, the time (in seconds) consumed in
the feature selection and in the optimization process of the model
is presented in Table 15. The time taken by each approach in the
presented findings is informative about the effectiveness of the
suggested methods, particularly bBERSFS for feature selection and
BERSFS for optimizing an LSTM, BILSTM, and GRU ensemble
model. Convergence for bBERSFS was reported at 85 units in the
initial batch of findings. A single unit of time is equivalent to
93 s in bBER, 112 s in bSFS, 117 s in bPSO, 119 s in bGWO, and
125 s in bWOA. These findings show that bBERSFS converges more
quickly than the alternative feature selection approaches, which is
a significant benefit in terms of efficiency. To further optimize the
LSTM + BILSTM + GRU ensemble model, we provide a second
set of findings that zeroes in on BERSFS. In this case, we can
see that BERSFS has a convergence time of 36.89 units. On the
other hand, it takes 41.56 s, 45.36 s, 49.12 s, 51.78 s, and 63.98 s to
perform SFS, PSO, GWO, and WOA. By optimizing the ensemble
model with much more rapidity, BERSFS once again demonstrates
its efficacy. Multiple real-world applications may be drawn from
bBERSFS and BERSFS’s dramatic cutting down on convergence
time. Researchers and practitioners can speed up the feature
selection and ensemblemodel optimization procedures due to faster
convergence. These approaches are more time and effort efficient
than their predecessors, allowing for quicker experimentation,
analysis, anddecision-making.Additionally, bBERSFS andBERSFS’s
quicker convergence time helps with their scalability. They excel
at solving high-computational expense issues, such as large-scale

TABLE 15 Time elapsed in feature selection andmodel optimization (in
seconds).

Method bBERSFS bBER bSFS bPSO bGWO bWOA

Time 85 93 112 117 119 125

Method BERSFS BER SFS PSO GWO WOA

Time 36.89 41.56 45.36 49.12 51.78 63.98

feature selection and ensemble model optimization. Because of
their rapid convergence, these techniques can quickly analyze
complicated datasets, which boost the algorithms’ efficiency and
performance. Based on the reported convergence times, it is
noticeable that the suggested approaches, bBERSFS for feature
selection and BERSFS for optimizing the ensemble model, are
superior to the alternatives. These findings highlight the benefits of
using bBERSFS andBERSFS in practice; academics andpractitioners
may now speed up convergence and boost productivity in feature
selection and ensemble model optimization projects thanks to these
findings.

5 Conclusion and future work

The approaches based on AI do not require the use of explicit
mathematical expressions, in contrast to the statistical and physical
approaches. It can also learn on its own, arrange itself on its own,
and adapt to its surroundings without any outside assistance. These
techniques make it possible to train the network by using historical
data that have already been recorded from each unique location
and basing it on a number of learning techniques. The strategies’
foundation in a number of learning techniques makes this possible.
A novel component of this research was the use of the updated
BER metaheuristic technique, which was based on SFS BERSFS, to
increase wind power forecasting accuracy. The proposed approach
achieved the following regression results: RMSE = 0.002399, MAE =
0.001802, MBE = 7.96E-05, r = 0.999761, R2 = 0.999522, RRMSE
= 0.838491, NSE = 0.999522, and WI = 0.992269. These results
proved the effectiveness and accuracy of the proposed method in
forecasting the wind power. On the other hand, Wilcoxon’s rank-
sumandANOVA testswere used in the statistical inquiry to examine
the robustness of the developed BERSFS-based model. In future
work, the BERSFS-based regressionmodel can be adapted and tested
for a variety of datasets because of this method’s flexibility and to
clearly identify its drawbacks.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/SupplementaryMaterial; further inquiries can be directed
to the corresponding authors.

Author contributions

Conceptualization, EE-K;methodology,MS andEE-K; software,
EE-K and AI; validation, OE and ME-S; formal analysis, AA, LA,

Frontiers in Energy Research 16 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1220085
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Saeed et al. 10.3389/fenrg.2023.1220085

and DK; investigation, EE-K and AI; writing—original draft, MS
and EE-K; writing—review and editing, ME-S, AI, LA, and EE-
K; visualization, AA, and DK; and project administration, EE-K.
All authors contributed to the article and approved the submitted
version.

Funding

This studywas supported by PrincessNourah bintAbdulrahman
University Researchers Supporting Project number (PNURSP
2023R120), Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors, and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abdel Samee, N., M El-Kenawy, E. S., Atteia, G., Jamjoom, M. M., Ibrahim, A.,
Abdelhamid, A., et al. (2022). Metaheuristic optimization through deep learning
classification of COVID-19 in chest X-ray images. Comput. Mater. Continua 73,
4193–4210. doi:10.32604/cmc.2022.031147

Ackermann, T. (2000). Wind energy technology and current status: A review. Renew.
Sustain. Energy Rev. 4, 315–374. doi:10.1016/s1364-0321(00)00004-6

Al-qaness, M. A., Ewees, A. A., Fan, H., Abualigah, L., and Elaziz, M. A.
(2022). Boosted ANFIS model using augmented marine predator algorithm
with mutation operators for wind power forecasting. Appl. Energy 314, 118851.
doi:10.1016/j.apenergy.2022.118851

Bechrakis, D., and Sparis, P. (2004). Correlation of wind speed between
neighboring measuring stations. IEEE Trans. Energy Convers. 19, 400–406.
doi:10.1109/tec.2004.827040

Bello, R., Gomez, Y., Nowe, A., and Garcia, M. M. (2007). “Two-step particle
swarm optimization to solve the feature selection problem,” in Seventh International
Conference on Intelligent Systems Design and Applications (ISDA 2007), Brazil, 20-24
October 2007, 691–696. doi:10.1109/ISDA.2007.101

Bhaskar, K., and Singh, S. N. (2012). AWNN-assisted wind power forecasting
using feed-forward neural network. IEEE Trans. Sustain. Energy 3, 306–315.
doi:10.1109/tste.2011.2182215

Bontempo, R., and Manna, M. (2022). The joukowsky rotor for diffuser
augmented wind turbines: Design and analysis. Energy Convers. Manag. 252,
114952. doi:10.1016/j.enconman.2021.114952

Bouyeddou, B., Harrou, F., Saidi, A., and Sun, Y. (2021). “An effective wind power
prediction using latent regression models,” in 2021 International Conference on ICT
for Smart Society (ICISS), Indonesia, 02-04 August 2021 (IEEE).

Buturache, A. N., and Stancu, S. (2021). Wind energy prediction using machine
learning. Low. Carbon Econ. 12, 1–21. doi:10.4236/lce.2021.121001

Cheng, L., Chen, Y., and Liu2PnS-, G. E. G. (2022). 2PnS-EG: A general
two-population n-strategy evolutionary game for strategic long-term bidding in a
deregulated market under different market clearing mechanisms. Int. J. Electr. Power
and Energy Syst. 142, 108182. doi:10.1016/j.ijepes.2022.108182

Cheng, L., Yin, L., Wang, J., Shen, T., Chen, Y., Liu, G., et al. (2021). Behavioral
decision-making in power demand-side response management: A multi-population
evolutionary game dynamics perspective. Int. J. Electr. Power and Energy Syst. 129,
106743. doi:10.1016/j.ijepes.2020.106743

Couto, A., and Estanqueiro, A. (2022). Enhancing wind power forecast
accuracy using the weather research and forecasting numerical model-based
features and artificial neuronal networks. Renew. Energy201, 1076–1085.
doi:10.1016/j.renene.2022.11.022

da Silva, R. G., Moreno, S. R., Ribeiro, M. H. D. M., Larcher, J. H. K., Mariani, V. C.,
and dos Santos Coelho, L. (2022). Multi-step short-term wind speed forecasting based
on multi-stage decomposition coupled with stacking-ensemble learning approach. Int.
J. Electr. Power &amp Energy Syst. 143, 108504. doi:10.1016/j.ijepes.2022.108504

Demolli, H., Dokuz, A. S., Ecemis, A., and Gokcek, M. (2019). Wind power
forecasting based on daily wind speed data using machine learning algorithms. Energy
Convers. Manag. 198, 111823. doi:10.1016/j.enconman.2019.111823

Deng, Y., Jia, H., Li, P., Tong, X., Qiu, X., and Li, F. (2019). “A deep learning
methodology based on bidirectional gated recurrent unit for wind power prediction,” in
2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), China,
19-21 June 2019 (IEEE). doi:10.1109/iciea.2019.8834205

Diab, A. A. Z., and Abdelhamid, A. M. (2022). Optimal identification of model
parameters for PEMFCs using neoteric metaheuristic methods. United Kingdom: IET
Renewable Power Generation.

Ding, F., Tian, Z., Zhao, F., and Xu, H. (2018). An integrated approach for
wind turbine gearbox fatigue life prediction considering instantaneously varying load
conditions. Renew. Energy 129, 260–270. doi:10.1016/j.renene.2018.05.074

Dobschinski, J., Bessa, R., Du, P., Geisler, K., Haupt, S. E., Lange, M., et al. (2017).
Uncertainty forecasting in a nutshell: Prediction models designed to prevent significant
errors. IEEE Power Energy Mag. 15, 40–49. doi:10.1109/mpe.2017.2729100

Dowell, J., and Pinson, P. (2015). Very-short-term probabilistic wind
power forecasts by sparse vector autoregression. IEEE Trans. Smart Grid, 1.
doi:10.1109/tsg.2015.2424078

Eid, M. M., El-kenawy, E. S. M., and Ibrahim, A. (2021). “A binary sine cosine-
modified whale optimization algorithm for feature selection,” in 2021 National
Computing Colleges Conference (NCCC) (IEEE), Saudi Arabia, 27-28 March 2021.
doi:10.1109/nccc49330.2021.9428794

Eid,M.M., El-Kenawy, E. S.M., Khodadadi, N.,Mirjalili, S., Khodadadi, E., Abotaleb,
M., et al. (2022).Meta-heuristic optimization of LSTM-based deepnetwork for boosting
the prediction of monkeypox cases. Mathematics 10, 3845. doi:10.3390/math10203845

Eissa, M., Yu, J., Wang, S., and Liu, P. (2018). Assessment of wind power prediction
using hybrid method and comparison with different models. J. Electr. Eng. Technol. 13,
1089–1098. doi:10.5370/JEET.2018.13.3.1089

El-kenawy, E. S. M., Abdelhamid, A. A., Ibrahim, A., Mirjalili, S., Khodadad,
N., duailij, M. A. A., et al. (2023). Al-biruni Earth radius (BER) metaheuristic
search optimization algorithm. Comput. Syst. Sci. Eng. 45, 1917–1934.
doi:10.32604/csse.2023.032497

El-kenawy, E. S. M., Albalawi, F., Ward, S. A., Ghoneim, S. S. M., Eid, M.
M., Abdelhamid, A. A., et al. (2022). Feature selection and classification of
transformer faults based on novel meta-heuristic algorithm. Mathematics 10, 3144.
doi:10.3390/math10173144

El-Kenawy, E. S.M., Eid,M.M., Saber,M., Ibrahim, A., andMbGWO-, S. F. S. (2020).
MbGWO-SFS: Modified binary Grey Wolf optimizer based on stochastic fractal search
for feature selection. IEEE Access 8, 107635–107649. doi:10.1109/access.2020.3001151

El-Kenawy, E. S. M., Mirjalili, S., Abdelhamid, A. A., Ibrahim, A., Khodadadi, N.,
and Eid, M. M. (2022a). Meta-heuristic optimization and keystroke dynamics for
authentication of smartphone users.Mathematics 10, 2912. doi:10.3390/math10162912

El-Kenawy, E. S. M., Mirjalili, S., Alassery, F., Zhang, Y. D., Eid, M. M., El-
Mashad, S. Y., et al. (2022b). Novel meta-heuristic algorithm for feature selection,
unconstrained functions and engineering problems. IEEE Access 10, 40536–40555.
doi:10.1109/access.2022.3166901

Ewees, A. A., Al-qaness, M. A., Abualigah, L., and Elaziz, M. A. (2022). HBO-
LSTM: Optimized long short term memory with heap-based optimizer for wind power
forecasting.EnergyConvers.Manag. 268, 116022. doi:10.1016/j.enconman.2022.116022

Global wind report (2022). Global wind report 2022. https://gwec.net/global-wind-
report-2022/ (Accessed June 05).

González Sopeña, J. M., Pakrashi, V., and Ghosh, B. (2023). A benchmarking
framework for performance evaluation of statistical wind power forecasting models.
Sustain. Energy Technol. Assessments 57, 103246. doi:10.1016/j.seta.2023.103246

Hakami, A. M., Hasan, K. N., Alzubaidi, M., and Datta, M. (2022). A review of
uncertainty modelling techniques for probabilistic stability analysis of renewable-rich
power systems. Energies 16, 112. doi:10.3390/en16010112

Frontiers in Energy Research 17 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1220085
https://doi.org/10.32604/cmc.2022.031147
https://doi.org/10.1016/s1364-0321(00)00004-6
https://doi.org/10.1016/j.apenergy.2022.118851
https://doi.org/10.1109/tec.2004.827040
https://doi.org/10.1109/ISDA.2007.101
https://doi.org/10.1109/tste.2011.2182215
https://doi.org/10.1016/j.enconman.2021.114952
https://doi.org/10.4236/lce.2021.121001
https://doi.org/10.1016/j.ijepes.2022.108182
https://doi.org/10.1016/j.ijepes.2020.106743
https://doi.org/10.1016/j.renene.2022.11.022
https://doi.org/10.1016/j.ijepes.2022.108504
https://doi.org/10.1016/j.enconman.2019.111823
https://doi.org/10.1109/iciea.2019.8834205
https://doi.org/10.1016/j.renene.2018.05.074
https://doi.org/10.1109/mpe.2017.2729100
https://doi.org/10.1109/tsg.2015.2424078
https://doi.org/10.1109/nccc49330.2021.9428794
https://doi.org/10.3390/math10203845
https://doi.org/10.5370/JEET.2018.13.3.1089
https://doi.org/10.32604/csse.2023.032497
https://doi.org/10.3390/math10173144
https://doi.org/10.1109/access.2020.3001151
https://doi.org/10.3390/math10162912
https://doi.org/10.1109/access.2022.3166901
https://doi.org/10.1016/j.enconman.2022.116022
https://gwec.net/global-wind-report-2022/
https://gwec.net/global-wind-report-2022/
https://doi.org/10.1016/j.seta.2023.103246
https://doi.org/10.3390/en16010112
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Saeed et al. 10.3389/fenrg.2023.1220085

Hamid, A., and Alotaibi, S. (2022a). Optimized two-level ensemble model for
predicting the parameters of metamaterial antenna. Comput. Mater. Continua 73,
917–933. doi:10.32604/cmc.2022.027653

Hamid, A., and Alotaibi, S. (2022b). Robust prediction of the bandwidth of
metamaterial antenna using deep learning. Comput. Mater. Continua 72, 2305–2321.
doi:10.32604/cmc.2022.025739

Han, S., hui Qiao, Y., Yan, J., qian Liu, Y., Li, L., and Wang, Z. (2019).
Mid-to-long term wind and photovoltaic power generation prediction based on
copula function and long short term memory network. Appl. Energy 239, 181–191.
doi:10.1016/j.apenergy.2019.01.193

Hussah Nasser AlEisa, A., El-Sayed, M., Ali Alhussan, A., Saber, M., A.
Abdelhamid, A., and Sami Khafaga, D. (2022). Transfer learning for chest X-rays
diagnosis using dipper Throated algorithm. Comput. Mater. Continua 73, 2371–2387.
doi:10.32604/cmc.2022.030447

Jung, J., and Broadwater, R. P. (2014). Current status and future advances
for wind speed and power forecasting. Renew. Sustain. Energy Rev. 31, 762–777.
doi:10.1016/j.rser.2013.12.054

Khafaga, D. S., Alhussan, A. A., El-Kenawy, E. S. M., Ibrahim, A., Eid, M. M.,
and Abdelhamid, A. A. (2022). Solving optimization problems of metamaterial and
double t-shape antennas using advanced meta-heuristics algorithms. IEEE Access 10,
74449–74471. doi:10.1109/access.2022.3190508

Kusiak, A., Zheng, H., and Song, Z. (2009). Wind farm power prediction: A data-
mining approach. Wind Energy 12, 275–293. doi:10.1002/we.295

Liu, T., Wei, H., and Zhang, K. (2018). Wind power prediction with missing data
using Gaussian process regression and multiple imputation. Appl. Soft Comput. 71,
905–916. doi:10.1016/j.asoc.2018.07.027

Liu, Y., Sun, Y., Infield, D., Zhao, Y., Han, S., and Yan, J. (2017). A hybrid forecasting
method for wind power ramp based on orthogonal test and support vector machine
(OT-SVM). IEEE Trans. Sustain. Energy 8, 451–457. doi:10.1109/tste.2016.2604852

Lu, W., Duan, J., Wang, P., Ma, W., and Fang, S. (2023). Short-term wind power
forecasting using the hybrid model of improved variational mode decomposition and
maximum mixture correntropy long short-term memory neural network. Int. J. Electr.
Power &amp Energy Syst. 144, 108552. doi:10.1016/j.ijepes.2022.108552

Mabel, M. C., and Fernandez, E. (2008). Analysis of wind power generation
and prediction using ANN: A case study. Renew. Energy 33, 986–992.
doi:10.1016/j.renene.2007.06.013

Mahmoud, F. S., Abdelhamid, A. M., Sumaiti, A. A., El-Sayed, A. H. M., and Diab, A.
A. Z. (2022). Sizing and design of a PV-wind-fuel cell storage system integrated into a
grid considering the uncertainty of load demand using themarine predators algorithm.
Mathematics 10, 3708. doi:10.3390/math10193708

Maldonado-Correa, J., Valdiviezo, M., Solano, J., Rojas, M., and Samaniego-
Ojeda, C. (2020). Wind energy forecasting with artificial intelligence techniques:
A review. Commun. Comput. Inf. Sci., 348–362. Springer International Publishing).
doi:10.1007/978-3-030-42520-3_28

Maray, M., Alghamdi, M., Alrayes, F. S., Alotaibi, S. S., Alazwari, S., Alabdan, R.,
et al. (2022). Intelligent metaheuristics with optimal machine learning approach for
malware detection on iot-enabled maritime transportation systems. Expert Syst. 39.
doi:10.1111/exsy.13155

Moustris, K., Zafirakis, D., Kavvadias, K., and Kaldellis, J. (2016). Mediterranean
conference on power generation, transmission, distribution and energy conversion
(MedPower 2016). Belgrade: Institution of Engineering and Technology. Wind
power forecasting using historical data and artificial neural networks modeling.
doi:10.1049/cp.2016.1094

Mujeeb, S., Alghamdi, T. A., Ullah, S., Fatima, A., Javaid, N., and Saba, T. (2019).
Exploiting deep learning for wind power forecasting based on big data analytics. Appl.
Sci. 9, 4417. doi:10.3390/app9204417

Olaofe, Z. O. (2014). A 5-day wind speed &amp power forecasts using a layer
recurrent neural network (LRNN). Sustain. Energy Technol. Assessments 6, 1–24.
doi:10.1016/j.seta.2013.12.001

Oubelaid, A., Shams, M. Y., and Abotaleb, M. (2023). Energy efficiency
modeling using whale optimization algorithm and ensemble model. J. Artif.
Intell. Metaheuristics 2, 27–35. doi:10.54216/JAIM.020103

Ouyang, T., Zha, X., Qin, L., He, Y., and Tang, Z. (2019). Prediction of wind
power ramp events based on residual correction. Renew. Energy 136, 781–792.
doi:10.1016/j.renene.2019.01.049

Pei, M., Ye, L., Li, Y., Luo, Y., Song, X., Yu, Y., et al. (2022). Short-term
regional wind power forecasting based on spatial–temporal correlation and
dynamic clustering model. Energy Rep. 8, 10786–10802. doi:10.1016/j.egyr.2022.
08.204

Qiao, B., Liu, J., Wu, P., and Teng, Y. (2022). Wind power forecasting based on
variational mode decomposition and high-order fuzzy cognitive maps. Appl. Soft
Comput. 129, 109586. doi:10.1016/j.asoc.2022.109586

Rajagopalan, S., and Santoso, S. (2009). “Wind power forecasting and error
analysis using the autoregressive moving average modeling,” in 2009 IEEE
Power &amp Energy Society General Meeting (IEEE), Canada, 26-30 July 2009.
doi:10.1109/pes.2009.5276019

Saber, M., and Abotaleb, M. (2022). Arrhythmia modern classification techniques: A
review. J. Artif. Intell. Metaheuristics 1, 42–53. doi:10.54216/JAIM.010205

Saber, M. (2022). Removing powerline interference from EEG signal using
optimized FIR filters. J. Artif. Intell. Metaheuristics 1, 08–19. doi:10.54216/JAIM.
010101

Sami Khafaga, D., Ali Alhussan, A., M. El-kenawy, E.-S., E. Takieldeen, A., M.
Hassan, T., A. Hegazy, E., et al. (2022). Meta-heuristics for feature selection and
classification in diagnostic Breast cancer. Comput. Mater. Continua 73, 749–765.
doi:10.32604/cmc.2022.029605

Shams, M. Y. (2022). Hybrid neural networks in generic biometric system: A survey.
J. Artif. Intell. Metaheuristics 1, 20–26. doi:10.54216/JAIM.010102

Shazly, K., and Khodadadi, N. (2023). Credit card clients classification using hybrid
guided wheel with particle swarm optimized for voting ensemble. J. Artif. Intell.
Metaheuristics 2, 46–54. doi:10.54216/JAIM.020105

Soman, S. S., Zareipour, H., Malik, O., and Mandal, P. (2010). “A review of
wind power and wind speed forecasting methods with different time horizons,” in
North American Power Symposium 2010, Arlington, 26-28 September 2010 (IEEE).
doi:10.1109/naps.2010.5619586

Suárez-Cetrulo, A. L., Burnham-King, L., Haughton, D., and Carbajo, R. S. (2022).
Wind power forecasting using ensemble learning for day-ahead energy trading. Renew.
Energy 191, 685–698. doi:10.1016/j.renene.2022.04.032

Tascikaraoglu, A., and Uzunoglu, M. (2014). A review of combined approaches
for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 34,
243–254. doi:10.1016/j.rser.2014.03.033

Wind power forecasting (2022). Wind power forecasting . https://www.kaggle.com/
datasets/theforcecoder/wind-power-forecasting (Accessed December 24, 2022).

Wu, J. L., Ji, T. Y., Li, M. S., Wu, P. Z., and Wu, Q. H. (2015). Multistep
wind power forecast using mean trend detector and mathematical morphology-
based local predictor. IEEE Trans. Sustain. Energy 6, 1216–1223. doi:10.1109/tste.2015.
2424856

Xiaoyun, Q., Xiaoning, K., Chao, Z., Shuai, J., and Xiuda, M. (2016). “Short-term
prediction of wind power based on deep long short-term memory,” in 2016 IEEE
PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, 25-28
October 2016 (IEEE). doi:10.1109/appeec.2016.7779672

Yang, L., He, M., Zhang, J., and Vittal, V. (2015). Support-vector-machine-enhanced
markov model for short-term wind power forecast. IEEE Trans. Sustain. Energy 6,
791–799. doi:10.1109/tste.2015.2406814

Yuan, X., Chen, C., Yuan, Y., Huang, Y., and Tan, Q. (2015). Short-term wind
power prediction based on LSSVM–GSAmodel. Energy Convers.Manag. 101, 393–401.
doi:10.1016/j.enconman.2015.05.065

Zhou, X., Liu, C., Luo, Y., Wu, B., Dong, N., Xiao, T., et al. (2022). Wind
power forecast based on variational mode decomposition and long short term
memory attention network. Energy Rep. 8, 922–931. doi:10.1016/j.egyr.2022.
08.159

Zhu, J., Su, L., and Li, Y. (2022). Wind power forecasting based on
new hybrid model with TCN residual modification. Energy AI 10, 100199.
doi:10.1016/j.egyai.2022.100199

Frontiers in Energy Research 18 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1220085
https://doi.org/10.32604/cmc.2022.027653
https://doi.org/10.32604/cmc.2022.025739
https://doi.org/10.1016/j.apenergy.2019.01.193
https://doi.org/10.32604/cmc.2022.030447
https://doi.org/10.1016/j.rser.2013.12.054
https://doi.org/10.1109/access.2022.3190508
https://doi.org/10.1002/we.295
https://doi.org/10.1016/j.asoc.2018.07.027
https://doi.org/10.1109/tste.2016.2604852
https://doi.org/10.1016/j.ijepes.2022.108552
https://doi.org/10.1016/j.renene.2007.06.013
https://doi.org/10.3390/math10193708
https://doi.org/10.1007/978-3-030-42520-3_28
https://doi.org/10.1111/exsy.13155
https://doi.org/10.1049/cp.2016.1094
https://doi.org/10.3390/app9204417
https://doi.org/10.1016/j.seta.2013.12.001
https://doi.org/10.54216/JAIM.020103
https://doi.org/10.1016/j.renene.2019.01.049
https://doi.org/10.1016/j.egyr.2022.08.204
https://doi.org/10.1016/j.egyr.2022.08.204
https://doi.org/10.1016/j.asoc.2022.109586
https://doi.org/10.1109/pes.2009.5276019
https://doi.org/10.54216/JAIM.010205
https://doi.org/10.54216/JAIM.010101
https://doi.org/10.54216/JAIM.010101
https://doi.org/10.32604/cmc.2022.029605
https://doi.org/10.54216/JAIM.010102
https://doi.org/10.54216/JAIM.020105
https://doi.org/10.1109/naps.2010.5619586
https://doi.org/10.1016/j.renene.2022.04.032
https://doi.org/10.1016/j.rser.2014.03.033
https://www.kaggle.com/datasets/theforcecoder/wind-power-forecasting
https://www.kaggle.com/datasets/theforcecoder/wind-power-forecasting
https://doi.org/10.1109/tste.2015.2424856
https://doi.org/10.1109/tste.2015.2424856
https://doi.org/10.1109/appeec.2016.7779672
https://doi.org/10.1109/tste.2015.2406814
https://doi.org/10.1016/j.enconman.2015.05.065
https://doi.org/10.1016/j.egyr.2022.08.159
https://doi.org/10.1016/j.egyr.2022.08.159
https://doi.org/10.1016/j.egyai.2022.100199
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Saeed et al. 10.3389/fenrg.2023.1220085

Glossary

AI Artificial intelligence

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural network

ANOVA Analysis of variance

AR Autoregressive

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

BER Al-Biruni Earth radius

BERSFS Al-Biruni Earth radius optimization-based stochastic fractal search

BILSTM Bidirectional LSTM

GRU Gated recurrent unit

GWO Gray wolf optimizer

kNN K-nearest neighbors

LSTM Long short-term memory

MA Moving average

MAE Mean absolute error

MPA Marine Predator Algorithm

MBE Mean bias error

MPA Marine Predators Algorithm

NSE Nash–Sutcliffe efficiency

PSO Particle swarm optimization

QQ Quantile–quantile

R Pearson’s correlation coefficient

R2 Coefficient of determination

RMSE Root-mean-squared error

RRMSE Relative root-mean-squared error

SFS Stochastic fractal search

SVM Support vector machines

WI Determine agreement

WOA Whale optimization algorithm

GWEC Global Wind Energy Council
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