
Vol.:(0123456789)

Computing
https://doi.org/10.1007/s00607-023-01215-4

1 3

REGULAR PAPER

An energy‑efficient and deadline‑aware workflow
scheduling algorithm in the fog and cloud environment

Navid Khaledian1,5 · Keyhan Khamforoosh1 · Reza Akraminejad2 ·
Laith Abualigah3 · Danial Javaheri4

Received: 19 May 2023 / Accepted: 14 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract
The Internet of Things (IoT) is constantly evolving. The variety of IoT applications
has caused new demands to emerge on users’ part and competition between com-
puting service providers. On the one hand, an IoT application may exhibit several
important criteria, such as deadline and runtime simultaneously, and it is confronted
with resource limitations and high energy consumption on the other hand. This has
turned to adopting a computing environment and scheduling as a fundamental chal-
lenge. To resolve the issue, IoT applications are considered in this paper as a work-
flow composed of a series of interdependent tasks. The tasks in the same workflow
(at the same level) are subject to priorities and deadlines for execution, making the
problem far more complex and closer to the real world. In this paper, a hybrid Parti-
cle Swarm Optimization and Simulated Annealing algorithm (PSO–SA) is used for
prioritizing tasks and improving fitness function. Our proposed method managed the
task allocation and optimized energy consumption and makespan at the fog-cloud
environment nodes. The simulation results indicated that the PSO–SA enhanced
energy and makespan by 5% and 9% respectively on average compared with the
baseline algorithm (IKH-EFT).

Keywords Fog computing · Workflow scheduling · Metaheuristic algorithm ·
Particle swarm optimization · Energy efficiency · Deadline

Mathematics Subject Classification 68M20

1 Introduction

As inexpensive computer chips develop and widespread Internet access is provided,
the Internet of Things (IoT) has become an important part of the digital world. The
applications of IoT encompass virtually all crucial aspects of modern life, such as

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-023-01215-4&domain=pdf
http://orcid.org/0000-0003-3018-2821

 N. Khaledian et al.

1 3

healthcare [1], underwater exploration [2], transportation and smart homes [3], and
industrial and mobile systems [4]. According to Cisco [5], 15 billion IoT devices
will be connected to the Internet by 2023, 21 billion by 2025, and 41 billion by
2027. Statistics indicate that 18.3 zettabytes of data were generated in 2019 by IoT
devices. Meanwhile, the International Data Corporation predicts an increase of
400 percent in the forthcoming years, denoting a value of 73 zettabytes by 2025
[6]. However, most IoT devices have constrained computational power and storage
space, making deploying apps and conducting data analysis difficult. Therefore, data
must be sent to alternative servers for processing and storage. There should be a
particular concern for processing, storage, and transfer of this huge amount of IoT
data when different IoT applications are considered. Despite the high storage and
processing capability of cloud computing, it causes long delays in data transfer and
response time due to the centralized nature of the devices and the long distances
between them. Consequently, implementing cloud-based IoT applications may fail
to meet a wide variety of their requirements, particularly for delay-sensitive ones.
Therefore, it is proposed that fog computing should be applied to complement cloud
computing [7, 8].

Due to the proximity of IoT devices to fog servers, they can provide services
similar to those of a cloud with less delay. Therefore, fog computations efficiently
meet the requirements of delay-sensitive applications in IoT. Moreover, a fog server
enables temporary data storage, which helps make real-time decisions. Thus, the fog
mitigates processing time, delay, and cost of service provision. Fog computations
can also help reduce the energy consumed by IoT devices supplied by limited batter-
ies since data processing requires energy consumption and will decrease the energy
consumed by an IoT device if carried out in the fog [9]. Therefore, IoT processing
requests are sent to the fog to mitigate delay and energy. If a request requires further
processing that the fog device cannot carry out, it will be sent to the cloud to be
processed there [3, 10]. In fog-cloud computing, each task has different bandwidths,
processing and storage resources, resource costs, and response times [11]. There-
fore, task scheduling involves a large number of challenges in these environments.
Paying attention to the delay in scheduling alone cannot meet the needs of IoT appli-
cations. Since every application demands to be executed within a specific time limit,
if it is conducted after the time limit, it may cause the application to fail. Therefore
in this research, attention is paid to energy and deadline simultaneously.

Scheduling has been turned into a critical issue by challenges including load bal-
ancing, scalability, reliability, reallocation, concern for performance, dynamicity of
processing resources, etc. [12, 13]. Scheduling aims to allocate tasks to resources
to optimize resource utilization. In many IoT applications, tasks are addressed as
workflows. A workflow considers tasks assets of interdependent ones that need to be
performed in a particular order and with specific priorities [14]. In a workflow, task
scheduling is represented as a directed acyclic graph (DAG). Each node indicates a
task, and the weight denotes runtime or computational cost. The graph edges show
the prerequisite relationships between work units and represent workflow [14, 15].
Most workflows in an application are scheduled with a particular purpose. The aim
can be to reduce cost, data transfer time, utilized storage space, energy consump-
tion, ultimate runtime, or a combination thereof. Among the criteria, makespan is

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

of great significance, as it increases the productivity of computational resources and
user satisfaction. Therefore, the algorithms attempt to mitigate the times required
for processing and workflow implementation as far as possible or to finish workflow
implementation before a particular deadline Workflow scheduling also has the goal
of lowering energy usage, which lowers costs and protects the environment [16, 17].
Energy productivity techniques can be classified into two groups [18]. Energy pro-
ductivity is achieved at both software and hardware levels. Optimization at the hard-
ware level is carried out by replacing logic gates with low consumption, leading to
an optimal architecture. Energy is decreased at the software level by optimizing task
scheduling and resource consumption [19–21]. An idle server consumes 70 percent
of its energy at the data center concerning its peak consumption [22, 23]. Research-
ers have proposed many methods and approaches to reduce energy consumption at
data centers. One of these methods is to efficiently use the resources available at the
data center using scheduling algorithms to organize the allocation of tasks to serv-
ers. Deadline and priority are other important criteria that need to be considered in
the scheduling problem since some tasks and requests should be performed quickly
within the set period in the real world. Their implementation afterward will be use-
less [24].

Given the importance of the examined criteria, the problem of energy consump-
tion concerning huge numerous IoT devices will lead to unrecoverable damages to
the environment as stated Co2 gas emission is increasing the energy consumption of
datacenters. Thus, managing incoming requests from the data centers is important
to the environment and also the budget for both business owners and users. Efficient
scheduling, considering deadlines of workflows with parameters of energy and cost
will overcome this issue up to a significant value.

This research seeks to consider the criteria of energy consumption, deadline,
and task priority simultaneously in the workflow. This will increase satisfaction on
the users’ and companies’ part, since users like their requests to be responded to
within the shortest time and without delay, and companies providing services like
their costs to be reduced. In contrast, huge costs are imposed on them by energy
consumption. We suggest a successful IoT task scheduling technique that minimizes
energy consumption and meets the deadline and task priority prerequisites to con-
front the above problems. For that purpose, we consider task scheduling as a mixed-
integer linear programming (MILP) problem to have IoT tasks performed before the
set deadlines considering priority and minimizing energy consumption. We also
consider deadline violation time minimization and priority in our model and com-
bine the improved PSO and SA algorithms to obtain the optimal solution. The main
contributions of this paper are mentioned in the following:

• Presenting a mathematical model for simultaneously minimized deadline,
makespan and optimizing energy consumption in fog nodes.

• Solving the proposed model using a hybrid two-step meta-heuristic algorithm
(smart tasks prioritization is done by PSO and allocation by SA).

• Improvement of PSO algorithm to efficiently map the workflow to available fog
and cloud nodes.

 N. Khaledian et al.

1 3

The rest of the paper is organized as follows. In Sect. 2, we review the research
literature. In Sect. 3, we discuss the problem architecture and formula. Section 4
examines the proposed method to minimize energy consumption and reduce makes-
pan, and deadline violation gave task priority. Finally, the experimental results and
conclusions appear in Sects. 5 and 6, respectively.

2 Literature review

In [25], a task-loading algorithm has been proposed using smart ant colony opti-
mization (SACO) inspired by the nature of metaheuristic programming for task
offloading in IoT sensor applications in a fog environment. In [26], an alternative
task scheduling method called AEOSSA has been suggested for IoT requests in a
fog-cloud environment. This method is built on an artificial ecosystem (AEO). The
authors focus on improving makespan and throughput but disregard energy con-
sumption and deadline. As stated earlier, IoT tasks are loaded in fog computing
rather than the cloud to raise the quality of service (QoS) required by many appli-
cations. However, IoT applications are limited by the constant availability of com-
putational resources on fog computing servers since the large volume of data cre-
ated by IoT devices causes network traffic and increases overhead. As a result, task
scheduling is a significant problem that requires effective resolution. AOAM model
is an energy-aware model developed to solve the problem of task scheduling in fog
computing [27]. The goal of AOAM is to maximize time intervals and improve user
QoS. The model uses the search operators in the Marine Predator Algorithm (MPA)
to generate various solutions and address local optimization problems. AOAM is
validated using several parameters, including clients, data centers, hosts, virtual
machines, tasks, and standard evaluation criteria such as energy and lifetime. The
model is designed to be efficient and effective in addressing the task scheduling
problem in fog computing, and it has been evaluated using rigorous testing methods.

Management and placement of smart tasks on fog platforms are challenging on a
large scale due to the essential nature of the modern workflow and the requirements
of a user sensitive to low energy consumption and response time. New platforms
have emerged to mitigate the drawbacks of earlier methods, either using heuristic
methods to achieve scheduling decisions rapidly or using methods based on artificial
intelligence, such as reinforcement learning and evolutionary approaches to adapt
to dynamic scenarios[28, 29]. The former methods are primarily incapable of fast
adaptation in a highly dynamic environment, while the latter is characterized by low
runtimes, negatively affecting response time. Thus, scheduling policies are required
to be reactive and, therefore, efficient in an unstable environment while exhibiting
low scheduling overhead costs. For this purpose, a gradient-based optimization
strategy has been proposed in [30] using gradient backpropagation given the input
(GOBI). The experiments conducted using GOBI methods with real data on fog
applications exhibit considerable improvements over the state-of-the-art algorithms
regarding energy consumption, response time, service level, and scheduling. In fog
computing, workflow scheduling is an NP-hard issue that aims to assign the best

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

possible set of resources to the workflow while considering various goals, including
deadlines, costs, energy, and QoS.

Fog providers, however, can experience high IoT network loads, breaking the
service-level agreement (SLA). A hidden Markov model (HMM) has been used in
[31] to predict the availability of each fog computing provider given variables like
the volume of requests received at each node, missed workflow deadlines, and fog
task loading in cloud computing. The architecture is made up of several fog comput-
ing providers. The unsupervised Baum-Welch approach trains the HMM, and the
Viterbi algorithm determines the likelihood that each node is reachable. Then, the
probability of access to fog computing providers is used to select one to schedule
IoT workflows. The rigorous testing done using iFogSim shows that the proposed
plan can perform better than the state-of-the-art by drastically lowering the number
of tasks loaded in cloud computing, missed workflow deadlines, and SLA breaches.

The fog computing paradigm has evolved as a distributed computational approach
for application presentation using fog nodes nearby IoT devices [28]. The amount of
data needed to process IoT services has exponentially increased due to the quick
development of IoT-based applications and the advent of 5G networks. Since IoT
applications are designed as multiple IoT services with various QoS requirements
that can be deployed at fog nodes with various resource capabilities in the fog eco-
system, it is difficult to devise a plan for optimal service placement. [32] makes a
good case for an effective approach to the placement of IoT services based on auton-
omous IoT application establishment in fog infrastructure. The suggested method
uses the metaheuristic whale optimization algorithm to design a strategy for effec-
tive service placement while monitoring the IoT QoS requirements and the capabili-
ties of the available fog nodes (WOA). To further achieve the required IoT service
placement plan while satisfying the QoS criteria of each service, an evolutionary
mechanism uses throughput and energy usage as objective functions. In order to
deliver useful services at the network edge and complement the cloud computing
paradigm, fog computing has just been created. Placing applications in fog infra-
structures is difficult due to the heterogeneity of the fog computing nodes, which
calls for effective management to suit the application’s needs. A bi-objective task
allocation mechanism for fog computing environments has been suggested in [29].
This approach aims to appropriately position the task modules on the underlying
fog devices, considering the security constraints and critical application levels. The
non-dominated sorting genetic algorithm (NSGA-II) is used to solve the allocation
problem, which is presented as a bi-objective knapsack algorithm. The simulation
findings show that, in comparison to previous metaheuristic-based processes, the
suggested solution boosts resource consumption and the ratio of service accept-
ance while decreasing service delay and energy usage. The simulation results show
how the suggested algorithm may be used to deploy applications in a fog computing
environment in such a way as to maximize their performance, throughput, and rate
of security satisfaction.

Recent researchers have focused on efficient methods involving the capabilities
of an edge network to run and support IoT applications and the relevant require-
ments. To meet the application requirements successfully while using the power of
cloud computing efficiently, smart scheduling approaches are needed to optimize

 N. Khaledian et al.

1 3

IoT application task scheduling in computational resources. In [30], The ideal solu-
tion for IoT application job scheduling has been specified. However, when applica-
tion components were set up improperly on the fog computing infrastructure, band-
width and resource loss would be increased, resulting in high energy usage and poor
QoS. In [33], the authors considered reducing bandwidth loss given the dependence
of application components in their distributed establishment. On the other hand,
service reliability will decrease if application components are established at a sin-
gle node due to a power consumption management perspective. In order to address
this point of failure and improve the application’s resistance to it, a mechanism is
described. After that, a multi-objective optimization algorithm’s component setup
is developed with the goal of minimizing energy consumption and overall delay for
each pair of application-relevant components. A multi-objective cuckoo search algo-
rithm (MOCSA) is suggested to resolve the hybrid optimization issue. The algo-
rithm is tested under various circumstances compared to several contemporary tech-
niques for validation reasons. Optimal use of the node energy has always been one
of the greatest challenges in a wireless sensor network (WSN). Another crucial issue
is lengthening network life, given the limited lifetimes of nodes on these networks
and energy management. Two computational distributions have been presented for
a dynamic wireless sensor network [34, 35]. An optimistic and a blind strategy are
used in this fog-based system to divide the computational load among fog networks.
The distribution, map, transfer, and combination (DMTC) processes comprise the
four main steps of the approach given. Based on the suggested distribution methods,
fuzzy multiple-attribute decision-making (fuzzy MADM) is also utilized for cluster-
ing and network routing. The outcomes show that the optimistic method outperforms
the blind method and consumes less energy, especially across wide-area networks.

When many of an IoT user’s new applications are connected to fog nodes, load
examination becomes an issue in fog computing. The huge amount of data that
transfers from IoT devices to remote cloud servers causes delay and excessive use
of bandwidth [32]. An Internet-based distributed computational model called fog
computing has emerged for the purpose of storing datasets produced by IoT devices
around the user. The method facilitates the allocation of the required resources by
removing inactive services. Since an IoT device constantly generates large amounts
of data, it is challenging to place it at a storage fog node with different capabilities
of decreasing delay and data access cost and increasing dataset reliability and acces-
sibility while meeting the QoS requirements as a task. A data placement mechanism
based on a metaheuristic algorithm has been proposed in [36] for data-based IoT
applications in the fog environment using biogeography-based optimization (BBO).
Additionally, for the issue of data placement in the fog ecosystem, a different frame-
work is created to represent the transmission of data copies between IoT devices
and storage fog nodes. Energy consumption is an essential factor that can directly
affect the costs of CO2 storage and emission in a fog environment. It can be reduced
using efficient scheduling approaches where tasks are drawn on the best resources
relevant to several contradictory objectives [37]. To address these issues, In [38], an
opposition-based hybrid discrete optimization algorithm referred to as DMFO-DE,
a discrete version of the moth-flame optimization (MFO) algorithm based on the
opposition (OBL) is presented and combined with the differential evolution (DE)

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

algorithm to improve convergence speed. The problem of local optima in DMFO-
DE for workflow scheduling in a fog computing environment is resolved using the
methods of dynamic voltage and frequency scaling (DVFS). The order in which
activities are completed in a workflow is determined using the heterogeneous earli-
est finish time (HEFT) method. By using fewer virtual machines (VMs) and estab-
lishing connections between related processes, the workflow scheduling strategy
aims to reduce energy usage in the scheduling process.

The authors of [39] have solved the workflow scheduling problem using a hybrid
algorithm involving plant growth optimization, simulated annealing, and water cycle
optimization to reduce cost, delay, and energy consumption in the cloud and fog
clusters. First, the plant growth optimization algorithm obtains the appropriate clus-
ters based on cost and energy. Resources are then selected to be allocated to tasks
based on the simulated annealing algorithm. Next, tasks immigrate between nodes
to balance the load based on the water cycle optimization algorithm. Workflow
scheduling has been formulated in [40] as a bi-objective problem in cloud comput-
ing. A hybrid algorithm involving simulated annealing and the iteration technique
is used to solve the problem. Task priority is based on the initial population on the
HEFT approach, including upward, downward, and level ranking, which are iter-
ated. The authors of [41] have addressed the multi-objective workflow scheduling
problem with a focus on the objectives of finish time, response time, and cost. They
propose the multi-agent system technique based on the Genetic Algorithm to solve
the problem. The approach involves the conversion of the workflow graph into a set
of sub-workflows, which can be implemented using unique fog and cloud nodes,
each identified as an agent. In [42], a heuristic algorithm involves displaying task
priorities and selecting resources to solve the multi-objective workflow scheduling
problem in the cloud computing environment to reduce cost and finish time. Upward
ranking prioritizes tasks, and resources are selected based on Pareto ranking and
crowding distance. Navid et al. have also presented a hybrid improved krill herd
algorithm and an earliest finish time technique called IKH-EFT. Different naviga-
tions are carried out there in the workflow task prioritization step based on the krill
movements and the DCD, SCD, and LCD methods, leading to the smart generation
of dependent tasks. The authors use the earliest finish time technique in the task
allocation step and the DVFS technique to reduce energy consumption. The results
indicate simultaneous decreases in energy consumption makespan and monetary
costs in the fog-cloud environment [43].

For instance-intensive workflows in the cloud environment, a heuristic algorithm
named (HDECO) has been developed to optimize energy and cost [44]. An intelli-
gent threshold detector was created to detect CPU consumption and alter the thresh-
old of the CPU in order to prevent the powering on or off of several servers. Despite
the threshold detector’s distinctiveness, neither a meta-heuristic methodology nor
scientific procedures were studied. Researchers in [45] investigated a lossless elec-
troencephalogram (EEG) data compression technique. By employing lossless com-
pression, k-means clustering, and Huffman encoding, the suggested method lowered
the amount of EEG data provided to the fog gateway. It minimized the size of the
IoMT EEG data and used Naive Bayes to determine the patient’s epileptic seizure
state. Through measurements and comparative data, the approach’s efficacy was

 N. Khaledian et al.

1 3

demonstrated, ensuring accurate epileptic seizure detection. Despite their novelty
method in a fog environment case study was not in the scheduling field.

In [45] sensor devices clustered using DBSCAN method applied Cuckoo Sched-
uling Algorithm (CSA) at cluster heads. CSA scheduled sensor nodes for optimal
coverage, with cluster head pooling and CSA executed periodically. They studied
energy efficiency without cost parameters. In order to maintain coverage and extend
the lifetime of Wireless Sensor Networks (WSNs), an Energy-efficient Particle
Swarm Optimization for Lifetime Coverage Prolongation (EPSOLCOP) protocol
was presented. The protocol broadcasted the protocol among sensor nodes and sub-
divided the target sensing field into smaller subfields. In order to choose the opti-
mum sensor nodes to cover the sector, ensure low energy consumption, and maxi-
mize WSN lifetime, the cluster head used PSO. According to the simulation results,
EPSOLCOP was competitive and reached good coverage ratios while using less
energy [46].

To increase the lifetime and coverage of wireless sensor networks, [45] presented
the distributed genetic algorithm for lifetime coverage optimization (DiGALCO).
It incorporated genetic algorithm optimization based on sensor activity scheduling,
distributed cluster head selection, and virtual network subdivision. Cluster heads
pick the active sensors to be monitored in rounds of DiGAfLCO work. Experimental
results showed DiGALCO can prolong WSN lifetime and improve coverage perfor-
mance. To improve the transmission and lifespan of IoT sensor networks, an Energy-
efficient Transmission Optimization Protocol (ETOP) was presented as a solution to
problems with transmitted readings, energy use, and network longevity in a growing
number of sensor nodes in IoT. Before transmission, ETOP used correlation cluster-
ing based on reduction algorithms to eliminate redundant data. As a result, ETOP
outperforms other techniques [47]. Authors in [48–51] also studied different prob-
lems in IoT and fog for optimizing energy with different methods.

Researchers looked at the layered IoT architecture, assessment criteria, and appli-
cations of fog computing over the previous 4 years. They discussed heterogene-
ous vehicular fog networks and vehicular fog frameworks and strategies. The study
examined issues with interoperable processing and communication in fog networks
as well as potential remedies [46]. In [47] study on multi-agent systems (MAS) in
IoT applications and utilizing them for different purposes was done. They proposed
that MAS can be embedded into IoT layers and optimize energy consumption. A
new Energy-aware Data Offloading algorithm (EaDO) was proposed to improve
latency and energy. Authors used scheduling based on queuing rules and Hall’s
graph theory [48].

3 Preliminaries

IoT devices are geographically distributed at different places, generate requests
requiring plenty of computation, and are sensitive to delay. These devices send
their data to the higher layer to be processed at that level [47]. Delay-sensitive
requests call for (virtually) real-time processing. For instance, analyzing the
data generated by a health monitoring system has to be urgent, as delays in such

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

systems can have disastrous consequences. An application is a collection of
related tasks that must be completed in a given sequence and with a specific order
of priority. The fog layer is an intermediary one that is situated near the terminal
layer devices, between IoT devices and cloud data centers. There is also a par-
ticular node in this layer, known as the fog-breaker, responsible for central man-
agement and task scheduling. It is responsible for collecting user requests and
managing resources at the fog-cloud nodes. This node also generates the most
appropriate scheduling for workflows. The cloud, which uses powerful comput-
ers for processing and storage and demonstrates tremendous efficiency, is the
top layer in this design. It offers services for heavy workloads, computers, and
equipment for fast, secure data storage. Given those cloud layer servers are far
away from data resources, processes may be sent with some delay. Therefore, it
is suggested that delay-insensitive tasks with high complexity but no particular
deadline should be performed in this layer [48]. Delay-tolerant tasks are typically
delivered to the cloud environment, whereas delay-sensitive tasks are typically
sent to the fog environment.

Fig. 1 Three-layer structure

 N. Khaledian et al.

1 3

Ta
bl

e
1

 N
ot

at
io

ns
 u

se
d

in
 th

e
fo

rm
ul

ae
 a

nd
 m

et
ho

d
[2

4]

N
ot

at
io

n
D

es
cr

ip
tio

n
N

ot
at

io
n

D
es

cr
ip

tio
n

In
pu

t v
ar

ia
bl

es
e i
j

Th
e

lin
k

be
tw

ee
n

no
de

s
i a

nd
 j

T
a
s k

Si
ze

 o
f t

as
k
k

�
N

c i
C

PU
 p

ro
ce

ss
in

g
po

w
er

 a
t f

og
 n

od
e
i

T
a
d k

D
ea

dl
in

e
re

qu
ire

d
by

 ta
sk

 k

�
N

a
ct

i
En

er
gy

 c
on

su
m

pt
io

n
at

 fo
g

no
de

 i
 in

 th
e

ac
tiv

e
m

od
e

T
a
p k

Pr
io

rit
y

of
 ta

sk
 k

�
N

id
l

i
En

er
gy

 c
on

su
m

pt
io

n
at

 fo
g

no
de

 i
 in

 th
e

id
le

 m
od

e
T
a
in k

In
pu

t fi
le

 si
ze

 o
f t

as
k
k

ep ij
Pr

op
ag

at
io

n
de

la
y

be
tw

ee
n

no
de

s
i a

nd
 j

T
a
o
u
t

k
O

ut
pu

t fi
le

 si
ze

 o
f t

as
k
k

eb ij
B

an
dw

id
th

 b
et

w
ee

n
no

de
s
i a

nd
 j

T
a
f k

N
um

be
r o

f t
he

 p
ar

en
t o

f t
as

k
k

Fo
rm

ul
at

io
n

va
ria

bl
es

d
p
rp

k
Pr

op
ag

at
io

n
de

la
y

ex
pe

rie
nc

ed
 b

y
ta

sk
 k

S
p
%

Pe
rc

en
ta

ge
 o

f s
at

is
fie

d
Io

T
ta

sk
s g

iv
en

 th
e

pr
io

rit
ie

s
d
tx k

Tr
an

sf
er

 ti
m

e
of

 ta
sk

 k
n
p

Su
m

 o
f t

he
 p

rio
rit

ie
s o

f a
ll

th
e

ta
sk

s
d
ex
e

k
Ex

ec
ut

io
n

tim
e

of
 ta

sk
 k

�
k

D
ea

dl
in

e
vi

ol
at

io
n

tim
e

of
 ta

sk
 k

d
w
t

k
W

ai
tin

g
tim

e
of

 ta
sk

 k
V
to
t

To
ta

l v
io

la
tio

n
tim

e
of

 th
e

ta
sk

s g
iv

en
 th

e
pr

io
rit

ie
s

R
k

Re
sp

on
se

 ti
m

e
of

 ta
sk

 k
A
i

A
ct

iv
e

tim
e

of
 fo

g
no

de
 i

 fo
r p

ro
ce

ss
in

g
al

l t
he

 a
llo

ca
te

d
ta

sk
s

s k
Sa

tis
fie

d
de

ad
lin

e
of

 ta
sk

 k
M
S

M
ax

im
um

 fo
g

no
de

 a
ct

iv
e

tim
e

N
s

N
um

be
r o

f I
oT

 ta
sk

s w
ith

 sa
tis

fie
d

de
ad

lin
es

�
i

Id
le

 ti
m

e
of

 fo
g

no
de

 i
N

p s
N

um
be

r o
f I

oT
 ta

sk
s w

ith
 sa

tis
fie

d
de

ad
lin

es
 g

iv
en

 th
e

pr
io

rit
ie

s
�
i

Es
tim

at
ed

 e
ne

rg
y

co
ns

um
pt

io
n

of
 fo

g
no

de
 i

S
%

Pe
rc

en
ta

ge
 o

f I
oT

 ta
sk

s w
ith

 sa
tis

fie
d

de
ad

lin
es

�
to
t

To
ta

l s
ys

te
m

 e
ne

rg
y

co
ns

um
pt

io
n

D
ec

is
io

n
va

ria
bl

es
x i
k

A
llo

ca
tio

n
of

 ta
sk

 k
 to

 fo
g

no
de

 i
yk ij

Se
le

ct
io

n
of

 e
ij
 to

 ro
ut

e
ta

sk
 k

z k
l

Pe
rfo

rm
an

ce
 p

rio
rit

y
of

 ta
sk

 i
 o

ve
r
j

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

Figure 1 shows the architecture of the proposed method. It involves three lay-
ers: IoT, fog, and cloud [49]. The IoT layer includes smart devices (for example,
sensors, smart cars, home appliances, and smartphones).

Table 1 shows the notations used in this paper. Attempts have been made to
use standard notations.

3.1 Problem formulation

Based on the architecture described above, we formulate each part and then
describe the mathematical model of the problem by combining each part.

3.1.1 Fog layer

The fog layer is composed of several heterogeneous devices. These devices and
the relations between them can be considered as a graph G = (�N;L) , where
�N =

{
�N1, �N2,… , �Nm

}
 is a set of m fog devices, and L =

{
eij|i, j ∈ �N

}
 is a

set of links between the �N s. Each �Ni ∈ �N involves the following features[24]:

• CPU processing power of �Nc
i
 MIPS (million instructions per second),

• Energy consumption of �Nact
i

 Watts in the active mode,
• Energy consumption of �Nidl

i
 Watts in the idle mode.

Moreover, each link eij ∈ L is associated with two major features:

• Bandwidth of eb
ij
 Megabits per second,

• Propagation delay of ep
ij
 Milliseconds.

3.1.2 IoT layer

A workflow can be considered a set of tasks loaded in a particular period from
IoT devices onto a fog controller (FC). The Tak = Tas

k
, Tad

k
, Ta

p

k
, Tain

k
, Taout

k
, Ta

f

k

quadruple defines each task, where Tas
k
 is task size in MIPS, Tad

k
 is the required

deadline in milliseconds, Tap
k
 is task priority (with a larger number denoting a

higher priority), Tain
k

 is the input file size in kilobytes, Taout
k

 is output file size in
kilobytes, and Taf

k
 is parent task number (zero for initial tasks) [24].

 N. Khaledian et al.

1 3

3.1.3 Decision variables

Three decision variables are used to allocate tasks to fog devices. The first one is
a binary matrix Xm×n that indicates how tasks are assigned to fog devices and is
defined as follows:

The second variable specifies if a task is processed at the same fog device as
those depending on it. In that case, the transfer cost will be zero; otherwise, this
cost will also need to be considered. For each task Tak , therefore, a binary varia-
ble yk

ij
∈ {0, 1} indicates whether the link eij ∈ L is selected to transfer the task.

This variable is defined as follows:

Moreover, a binary variable zkl ∈ {0, 1} is used to compare the priorities of two
tasks Tak and Tal . For this purpose, we set zkl = 1 if task Tak is prioritized over Tal ,
and we set zkl = 0 otherwise.

3.1.4 Energy consumption model

In most research, a significant measure is an energy that FNs use to do all tasks. It
is computed based on the amount of energy used in both active and idle modes. The
active period of FNi is the time that it requires to process all the tasks allocated to it,
calculated using the following formula.

The idle time �Ni can be calculated given the maximum runtime of each �N and
makespan (MS), as follows.

Therefore, the estimated consumed energy FNi is as follows based on the power
consumption specifications and the active and inactive periods.

(1)
xik =

{
1 if task Tak is assigned to �Ni

0 otherwise

∀i ∈ �N, ∀k ∈ Ta

(2)
yk
ij
=

{
1 if link eij is chosen for routing Tak
0 otherwise

∀i, j ∈ �N, ∀k ∈ Ta

(3)Ai =
∑

∀k∈Ta

(
dexe
k

× xik
)
,∀i ∈ �N

(4)
MS = max

∀i∈�N

(
Ai

)

�i =
(
MS − Ai

)
,∀i ∈ �N

(5)�i =
(
Ai × �Nact

i
+ �i × �Nidl

i

)
, ∀i ∈ �N

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

The following Equation can calculate the system’s overall energy consumption as
the sum of the energy used by each �N.

3.1.5 Optimization objectives

Ta =
{
Ta1, Ta2,… , Tan

}
 is a set of tasks concerning a flow received from IoT

devices, and there is a set of heterogeneous �N s �N =
{
�N1, �N2,… , �Nm

}
 . The

problem involves a mapping of the tasks to the �N s (� ∶ T → F), while energy
consumption is optimized and the task execution deadlines are satisfied. Therefore,
the aim is to minimize �tot provided that Rk ≤ Tad

k
 for each task k. Scheduling should

occur so that each task is performed by one and only one �N , and the algorithm
ensures task deadline satisfaction. In the proposed method, we should seek to mini-
mize deadline violation time upon its occurrence, i.e., when the deadline of a task
is not observed, considering priority. Thus, tasks with high priorities should prefer-
ably not exceed the set deadlines, and the violation should be minimal if unavoid-
able. Consequently, we add Vtot minimization to our optimization problem, where
the violations of the set deadlines are considered based on priority. Therefore, the
objective function is defined as follows. Where � and � are weights of two objective
parameters of energy and deadline. These weights are modified dynamically during
simulations.

3.1.6 Response time

The response time for the task Tak sent to the device �Ni is influenced by fac-
tors such as propagation delay, transfer time, execution time, and waiting time in
the queue. The propagation delay upon the transfer of task Tak to the device �Ni is
obtained as follows.

Transfer time, including the time spent to transfer the input file of size Tain
k

 , from
FC to �N (�Ni ∈ �N) and to resend the output file of size Taout

k
 , from �Ni to FC can

be calculated as follows.

(6)�
tot =

∑

∀i∈F

�i

(7)min(� ∗ Vtot + � ∗ �
tot)

(8)d
prp

k
=

∑

∀eij∈L

(
2 × e

p

ij
× yk

ij

)
, ∀k ∈ Tak

 N. Khaledian et al.

1 3

A major factor affecting the system response time is the CPU execution time. The
execution time of Tak is specified through the division of task size (Tak) by the pro-
cessing power of the fog device CPU.

We consider two limitations of the devices. Firstly, each �N can process only one
task at a time. We also assume that the tasks are non-preemptive. A task is continu-
ously executed until finished once placed on a particular �N . When a task arrives at
an �N , therefore, it needs to wait in the �N queue until the previous tasks allocated
to the �N are completed. On that basis, the waiting time for the task Tak is as follows.

Therefore, the response time of the task Tak is as follows.

Next, we calculate the number of IoT tasks that meet the relevant deadlines (Ns) and
then the total deadline violation time for the set of n tasks sent to FC in a particular
period.

We use sk ∈ {0, 1} to indicate whether the deadline of the task Tak is satisfied.

Therefore, the tasks with satisfied deadlines and their percentage can be calculated.

S% represents the percentage of IoT tasks that satisfy the deadline requirement, and
Sp% indicates the percentage of those considering the priorities as well, where Np

s and
Np are as follows

(9)dtx
k
=

∑

∀eij∈L

Tain
k
+ Taout

k

eb
ij

× yk
ij
, ∀k ∈ Ta

(10)dexe
k

=
∑

∀i∈�N

Tas
k

�Nc
i

× xik, ∀k ∈ Ta

(11)dwt
k

=
∑

∀l∈Ta

∑

∀i∈�N

(
dexe
l

× zkl × xik × xil
)
, ∀k ∈ Ta

(12)Rk = d
prp

k
+ dtx

k
+ dexe

k
+ dwt

k
, ∀k ∈ Ta

(13)Ns =
∑

∀k∈Ta

sk, ∀k ∈ Ta

(14)sk =

{
1 if Rk < Tad

k

0 otherwise
, ∀l, k ∈ Ta

(15)S% =
Ns

n

(16)Sp% =
N

p
s

np

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

N
p
s denotes the deadline violation time of the task Tak considering the priorities, and

Np measures the quality of task scheduling by calculating deadline violation time con-
sidering priority. Finally, the total violation time of the tasks given the priorities can
obtain by Eq. (20).

4 Proposed method

The proposed method uses a hybrid of the simulated annealing (SA) optimization
algorithm and the particle swarm optimization (PSO) algorithm, which are exam-
ined below.

4.1 Improved PSO

Particle swarm optimization is a smart optimization algorithm based on particles’
collective intelligence. To obtain the best position of each particle, this algorithm
uses its best position in the past and its best global position. Thus, all particles help
each other to achieve the best position. It has been found in many problems to be
a better solution than heuristic and other smart metaheuristic algorithms, exhibit-
ing better performance. It is a metaheuristic method used in optimization problems
with continuous functions[50]. There are three vectors for each particle in the parti-
cle swarm optimization algorithm: the current position of the particle (P), particle
speed (v), and the best position experienced so far by the particle (Pbest). Moreover,
the best position found by all particles is represented by PGbest . Movement of a par-
ticle combining these vectors helps to explore the problem space further, and con-
sideration of PGbest causes it to converge over time. The following positions of the
particles are specified using the particle velocity equation. There are three important
parts to the Equation: current particle velocity (v(t)) , change in particle velocity and
its direction toward the best personal experience C1 × rand ×

(
Pbest(h, t) − P(h, t)

)
 ,

(17)Np
s
=

∑

∀k∈Ta

sk × Ta
p

k
, ∀k ∈ Ta

(18)Np =
∑

∀k∈T

Ta
p

k
,

(19)�k =
(
max

(
0,Rk − Tad

k

)
× Ta

p

k

)
,

∀k ∈ Ta

(20)Vtot =
∑

∀k∈Ta

�k

 N. Khaledian et al.

1 3

Ta
bl

e
2

 A
 sa

m
pl

e
pa

rti
cl

e
co

ns
id

er
ed

 fo
r t

as
k

sc
he

du
lin

g
of

 th
e

D
A

G
 (B

ol
de

d
va

lu
es

 a
re

 fo
g

no
de

s s
el

ec
te

d
ba

se
d

on
 th

e
m

ax
im

um
 p

ar
tic

le
 v

al
ue

)

FO
G

 n
od

e
TA

0
TA

1
TA

2
Ta

3
TA

4
TA

5
TA

6
TA

7
TA

8
TA

9

FN
1

9.
13
1

−
 9.

31
0

−
 4.

72
0

−
 8.

33
1

−
 4.

73
0

6.
56

9
−

 8.
31

6
3.

19
1

9.
35
6

9.
62
8

FN
2

−
 8.

22
6

−
 3.

87
4

0.
49

0
−

 6.
04

6
1.

35
7

−
 4.

24
2

−
 1.

18
6

4.
31
0

−
 7.

51
7

5.
85

3
FN

3
2.

92
9

−
 7.

52
2

1.
77
0

7.
76
6

−
 6.

34
0

0.
51

7
9.
03
9

−
 3.

51
3

−
 8.

32
3

9.
36

1
FN

4
6.

02
3

8.
97
5

−
 7.

31
5

2.
14

9
2.
53
7

7.
22
9

6.
51

4
−

 6.
35

0
6.

71
6

−
 6.

39
6

FN
5

−
 0.

99
7

−
 0.

12
4

−
 3.

38
0

−
 3.

45
8

−
 7.

39
1

−
 7.

43
9

−
 3.

18
9

0.
07

2
−

 7.
79

2
2.

12
6

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

and change in particle velocity and its direction toward the best group experience
C2 × rand ×

(
PGbest(t) − P(h, t)

)
 . Parameters C1 and C2 specify the importance and

weight of collective intelligence, The fact that the above parameters are constant is a
very important factor. They stand for the significance of particle velocity change and
its direction with respect to the best individual experience and the significance of
particle velocity change and its direction concerning the best collective experience,
respectively. Therefore, we can calculate importance instead of applying a constant
value. Thus, we update the Equation as follows:

where C′
1
 is the probability that the particle undergoes no change in direction and

moves along its own path, C′
2
 is the probability that the particle undergoes some

change in direction and is directed toward the best personal experience, C′
3
 is the

probability that the particle undergoes some change in direction and is directed
toward the best group experience. In fact, the C′

1
 , C′

2
 , and C′

3
 factors are probabilities

that are set to the possibility that the optimal particle is located at different posi-
tions given the objective function. They indicate the rate of maintaining the current
velocity, the rate of movement toward the local optimum, and the rate of movement
toward the global optimum. Therefore, these probabilities are expressed by the fol-
lowing equations.

(21)
v(h, t + 1) = C

�
1
× v(h, t) + C

�
2
×
(
P
best(h, t) − P(h, t)

)
+ C

�
3
×
(
P
Gbest(t) − P(h, t)

)

(22)C
�
1
=

(
�
tot

Position
+ �

tot

Best Position
+ �

tot

Best Global Position

)

�
tot

Position

(23)C
�
2
=

(
�
tot

Position
+ �

tot

Best Position
+ �

tot

Best Global Position

)

�
tot

Best Position

(24)C
�
3
=

(
�
tot

Position
+ �

tot

Best Position
+ �

tot

Best Global Position

)

�
tot

Best Global Position

Fig. 2 A sample DAG

 N. Khaledian et al.

1 3

Given the above probabilities, particles move toward more probable positions, i.e.,
they involve better objective functions, thereby facilitating the achievement of optimal-
ity for the conditions set by constant factors.

4.2 Simulated annealing algorithm

Simulated annealing (SA) is a simple, efficient heuristic optimization algorithm for
solving optimization problems in large search spaces. It is preferable in problems where
the search space is discrete. Obtaining an approximate solution for the global optimum
is more important than an exact solution for the local optimum within a limited period
[40]. This algorithm has been developed to enable escape from local optima. It may
initially prefer fewer proper solutions to better ones but converges to global optima over
time by avoiding local ones.

4.3 Description of the proposed method

In the proposed method, each particle is considered as a matrix for task-resource
assignment. The matrix consists of m rows (equal to virtual machines) and n columns
(equal to Tasks). Each task is assigned to the VM with the highest pi value for that col-
umn. �Ni is allocated to the allowed task Ta via the following Equation.

Ta , the selected allowed task is obtained via the following Equation:

where TaAllowed =

�
k ∈ Ta�Taf

k
= 0 or

∑
i∈�N x

i,Ta
f

k

= 1
�

 . That is, a fog resource
can be allocated to a task while observing the workflow hierarchy only if it is located
at the root or its parent has undergone resource allocation. Once a task is performed,

(25)
xi,Ta =

{
1 if i = argmax

j∈FN

Pj,Ta

0 otherwise

∀i ∈ �N

(26)Ta = argmax
k∈TaAllowed

(
max
j∈FN

Pj,k

)

Table 3 Matrix x for a particle

FOG NODE TA0 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9

FN1 1 0 0 0 0 0 0 0 1 1
FN2 0 0 0 0 0 0 0 1 0 0
FN3 0 0 1 1 0 0 1 0 0 0
FN4 0 1 0 0 1 1 0 0 0 0
FN5 0 0 0 0 0 0 0 0 0 0

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

all the tasks that depend on it are located in TaAllowed , and those that are not or
have other parents besides this one (multi-parent tasks) wait for the other parents to
be performed. For instance, let us consider the DAG in Fig. 2, which will be imple-
mented on a network with five fog nodes. If we randomly generate a particle with
components lying within the range from − 10 to + 10, it can assume the following
values which is shown in Table 2.

The proposed algorithm first places Ta0, the only parentless node, on the list
of allowed tasks and allocates it to FN1, for which the particle value is maximum
in the column for this task. Therefore, x1,0 = 1 and TaAllowed = {1, 2} . Next, the
maximum values in the Ta1 and Ta2 columns are calculated, and the node with
the highest value is assigned to the relevant task. Thus, Task 1 is selected, for
which FN4 is considered. Therefore, x4,1 = 1 and TaAllowed = {2, 3, 4} . The pro-
cedure continues until no more task remains. Consequently, the matrix x is dis-
played in Table 3.

Dijkstra’s algorithm forms the matrix y, and the matrix z is completed in order
of assignment. That is, the task to which FN is allocated is prioritized over those
that are still waiting for their turns (zij = 1 , if i is allocated to a node, and j is still
in the waiting queue). Therefore, the matrix z is indicated in Table 4.

According to matrix z, the tasks are performed in this order: 0, 1, 3, 4, 7, 2, 6,
9, 5, and 8.

After the implementation of the PSO algorithm, it is time to implement the SA
algorithm. At each step of the PSO, if the global optimum changes, for minimiz-
ing Vtot, which also leads to the improvement of the termination time, the steps of
the SA algorithm are performed as follows:

1. The candidate solution (sol’) is created based on the current location of PGbest.
2. If Vtot is less than the candidate solution and there is no increase in �tot , this solu-

tion replaces PGbest and if Vtot is less than Vtot with a probability, it will replace
PGbest.

3. Return to the second step if the internal stop condition is not reached.
4. Decrease in temperature.
5. Return to the second step if the external stop condition is not reached.

Table 4 Matrix z for a particle 0 1 2 3 4 5 6 7 8 9

0 0 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1
2 0 0 0 0 0 1 1 0 1 1
3 0 0 1 0 1 1 1 1 1 1
4 0 0 1 0 0 1 1 1 1 1
5 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 1 0 0 1 1
7 0 0 1 0 0 1 1 0 1 1
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 1 0

 N. Khaledian et al.

1 3

Here Pseudocode for proposed PSO–SA algorithm is explained.

6.1

6.2

6.3

6.4

6.5

6.6

5 Performance evaluation

To demonstrate the effectiveness of the proposed algorithm, we compared it to
FCFS, EDF, GFE, Detour, PSG [24], and PSG-M [24]. It should be noted that these
algorithms are slightly modified concerning their initial conditions to be capable of
implementing workflow tasks. In other words, scheduling is applied only to tasks
first in the execution queue or whose parents had been executed.

For experimentation, as in [20], we took into account a fog environment made up
of numerous heterogeneous, interconnected FNs with unpredictable network topol-
ogy and a variety of tasks imported from IoT devices to schedule the Fs. The number
of Fs varies from 30 to 90 for various trials, and the number of IoT jobs varies from

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

100 to 500. The CPU processing capacity of each is uniformly spread from 2000 to
6000 MIPS, and its active mode power consumption is expected to range between
80 and 200 watts arbitrarily to maintain the heterogeneity of the Fs. While the links’
capacity is set to 1000 megabits per second, the propagation latency between the Fs
is anticipated to range from 1 to 3 ms. It is believed that two different IoT task kinds
assume a strong relationship between their sizes and necessary timeframes [51]. For
one type, the task size is randomly set from 100 to 372 MI, while the task deadline
is assumed to range uniformly from 100 to 500 ms. For the other type, the values
range from 1028 to 4280 MI and 500 to 2500 ms, respectively. For both types, input
and output file sizes are randomly set to range from 100 to 10,000 KB and 1 to
1000 KB, respectively. Task priority is assumed to be a random value between zero
and one. For the proposed algorithm, we need to set the number of PSO iterations,
number of particles, number of internal SA iterations, temperature reduction factor,
and initial temperature by conducting extensive experimentation. The values bring-
ing about proper results include 1000, 200, 15, 0.99, and 0.025, respectively. All the
simulations are coded in MATLAB R2022a. The experiments are conducted on a
computer with a dual Intel Xeon X5650 2.66 GHz processor, 64 gigabytes of RAM,
and the Windows 10 operating system. To present the results with high reliability,
each experiment is replicated twenty times, and the mean values are reported. It
should be noted that the values of the tunable parameters of PSG and PSG-M are
adopted from [24] to enable examination of the performance of the algorithms. For
evaluation, therefore, we use criteria such as energy consumption (�tot), total dead-
line violation time given the Vtot priority, makespan, and the percentage of IoT tasks
satisfying their deadline requirements given the priority (Sp%).

5.1 Impact of an increase in the number of tasks

Figure 3 shows how the number of tasks affects algorithm performance. Here, we
assume the number of �N s to be constantly 60. As can be observed in Fig. 3a, the
simulation results demonstrate that an increase in the number of tasks imposes a
heavier load on the system in general. Therefore, a larger number of tasks miss
their deadlines, which raises task deadline violation time. As a result, the energy
consumption and makespan of the system also increase. Of course, the proposed
algorithm observes deadlines more properly than the other strategies. This is more
evident when task priority is considered, as the proposed algorithm involves con-
sideration. Figure 3b shows the percentage of tasks that observe deadlines, while
Fig. 3c shows the number of tasks with violated deadlines. As observed, the crite-
rion assumes smaller values in the proposed algorithm than in the competitors, even
smaller than one-tenth of the total number of tasks. Another interesting observa-
tion concerning our algorithm is that it significantly improves makespan over the
other methods. This is shown in Fig. 3d. The proposed algorithm seeks to obtain
�N so as to present minimum violation time for a particular task. Figure 3e shows

 N. Khaledian et al.

1 3

the system energy consumption. It should be noted that the makespan of a system
directly affects energy consumption. Therefore, makespan is expected to be mini-
mized once energy is.

Fig. 3 Comparison of the performance of the algorithms with a varying number of tasks; simulation
results for 60 �N s: a deadline satisfaction, b deadline satisfaction percentage with priority considera-
tions, c task deadline violation, d makespan, e total energy consumption

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

5.2 Impact of an increase in the number of fog nodes

This experiment aims to discover how the number of FNs affects the efficiency of the
compared algorithms. In this case, there are 300 tasks in total, which is a constant
value. Figure 4 shows the simulation results. Part c of the figure indicates that more
tasks are executed before their deadlines as the number of �N s increases, which

Fig. 4 Comparison of the performance of the algorithms with a varying number of fog nodes; simulation
results for 300 tasks: a deadline satisfaction, b deadline satisfaction percentage with priority considera-
tions, c task deadline violation, d makespan, e total energy consumption

 N. Khaledian et al.

1 3

is expected as addition of more �N s to the system raises the number of available
resources. Given task prioritizing and resource awareness, the suggested algorithm
has a significantly better percentage of tasks meeting their deadline criteria than the
alternatives. Specifically, the algorithm satisfies the deadlines of all the tasks when
the number of �N s is 60. Figure 4b shows this in the case where priority is consid-
ered, complicating the problem further. Our algorithm exhibits considerable perfor-
mance here compared to the others since it focuses on task deadlines in the second
step of fitness improvement. In part c of Fig. 4, it can be observed that total violation
time considerably decreases for all the algorithms as the number of �N s increases. It
is again clear that the proposed algorithm achieves the minimum number of deadline
violations faster than the compared ones. Firgure 4d and Fig. 4e show the simulation
results regarding energy consumption and makespan, where the proposed algorithm
is far better than the others.

Experimental results for different number of tasks are listed in Tables 5, 6, 7, 8, 9.

Table 5 Average percentage optimization of %S for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization S%

FCFS 80 68.23 64.95 44.89 40.21 24.09 45.24 49.48 76.01 62.37
EDF 87.58 69.5 66.93 47.71 46.8 13.35 42.59 45.06 65.60 39.51
Gfe 86.31 71.75 67.49 42.77 41.33 15.02 38.12 43.86 84.73 57.97
Detour 91.52 82.89 73.97 60.82 50.63 8.47 19.56 31.26 29.91 28.96
PSG 96.88 96.85 92.72 68.15 59.52 2.47 2.32 4.71 15.94 9.69
PSG-M 98.43 98.25 96.53 74.35 61.21 0.85 0.87 0.58 6.27 6.67
IKH-EFT 87.3 70.2 73.2 51 42.1 13.71 41.17 32.64 54.92 55.08
PSO–SA 99.27 99.1 97.09 79.01 65.29

Average 18.90 43.21 41.06 65.46 58.73

Table 6 Average percentage optimization of %SP for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization SP%

FCFS 47.7 43.2 37.7 27.6 16.2 88.89 95.83 104.24 94.57 201.85
EDF 48.4 42.5 41.3 30.9 22 86.16 99.06 86.44 73.79 122.27
Gfe 57.8 41.2 45.4 21.9 21.2 55.88 105.34 69.60 145.21 130.66
Detour 80 46.7 36.7 26.5 27.6 12.63 81.16 109.81 102.64 77.17
PSG 78.7 68.5 61.9 41.3 29.3 14.49 23.50 24.39 30.02 66.89
PSG-M 85.5 76.7 71.5 47.8 38.2 5.38 10.30 7.69 12.34 28.01
IKH-EFT 89.3 79.2 74.2 50 43.1 0.90 6.82 3.77 7.40 13.46
PSO–SA 90.1 84.6 77 53.7 48.9

Average 37.76 60.29 57.99 66.57 91.47

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

Table 7 Average percentage optimization of %Vtot for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization Vtot

FCFS 6.1 78.06 177.2 378.48 562.02 71.31 97.57 99.55 95.43 90.54
EDF 5.8 45.98 122.4 303.37 440.5 69.83 95.87 99.35 94.30 87.93
Gfe 4.7 24.05 81.02 232.49 355.27 62.77 92.10 99.01 92.56 85.04
Detour 4.1 22.36 21.09 100 238.82 57.32 91.50 96.21 82.70 77.74
PSG 3.2 4.5 2.52 43.46 99.57 45.31 57.78 68.25 60.19 46.61
PSG-M 2.9 3.1 1.75 29.11 85.25 39.66 38.71 54.29 40.57 37.64
IKH-EFT 2.5 2.5 1.28 22 65 30.00 24.00 37.50 21.36 18.22
PSO–SA 1.75 1.9 0.8 17.3 53.16

Average 53.74 71.07 79.16 69.59 63.39

Table 8 Average percentage optimization of Makespan for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization Makespan

FCFS 2.96 6.28 6.58 8.48 11.2 68.55 85.11 74.47 74.06 73.75
EDF 5.04 5.86 7.1 9.17 10.5 81.53 84.04 76.34 76.01 72.00
Gfe 0.948 2.07 2.06 3.33 4.1 1.79 54.83 18.45 33.93 28.29
Detour 0.897 1.8 2.34 3.11 3.93 − 3.79 48.06 28.21 29.26 25.19
PSG 0.948 1.75 2.12 2.82 3.81 1.79 46.57 20.75 21.99 22.83
PSG-M 0.999 1.24 2.07 2.7 3.52 6.81 24.60 18.84 18.52 16.48
IKH-EFT 0.965 1.1 1.9 2.5 3.2 3.52 15.00 11.58 12.00 8.13
PSO–SA 0.931 0.935 1.68 2.2 2.94

Average 22.89 51.17 35.52 37.97 35.24

Table 9 Average percentage optimization of energy for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization Etot

FCFS 15 38 45 53.1 78.1 39.80 73.68 63.78 63.47 70.81
EDF 24.1 35.2 47.7 58 66.2 62.53 71.59 65.83 66.55 65.56
Gfe 7.91 12 14.9 23.8 27.9 − 14.16 16.67 − 9.40 18.49 18.28
Detour 9.38 15 21.1 28.1 29.1 3.73 33.33 22.75 30.96 21.65
PSG 9.71 10.8 17.8 23 26.7 7.00 7.41 8.43 15.65 14.61
PSG-M 9.37 10 16.6 21.7 24.9 3.63 0.00 1.81 10.60 8.43
IKH-EFT 9.25 10.1 16.4 20.2 23.8 2.38 0.99 0.61 3.96 4.20
PSO–SA 9.03 10 16.3 19.4 22.8

Average 14.99 29.10 21.97 29.95 29.08

 N. Khaledian et al.

1 3

6 Conclusion

Fog computing has facilitated the relations between IoT and cloud centers and
increased data transfer speed between the two parts. Another achievement is that
it can process IoT requests if required. This study focused on task scheduling in the
fog computing environment to reduce service delay time and energy consumption
while observing task deadlines and priorities and maintaining workflow for IoT
devices. We examined IoT task scheduling over a heterogeneous fog network. For
this purpose, we first discussed the notions and problem formulation in the workflow
mode, which had not been considered before at the same time as maintenance of
deadline and priority. We presented an architecture to address these issues. Given
the multi-objective nature of the problem, we used an algorithm based on PSO and
SA to identify the most appropriate solution among the possible ones. The algorithm
reduces energy consumption and task finish time in two steps. We compared the pro-
posed algorithm to the others in modes with varying numbers of fog nodes and tasks
to evaluate its performance. The simulation results demonstrated that the proposed
algorithm performs more successfully in all the evaluations. It avoids entrapment
in local optima by generating neighboring solutions. Although the key idea in this
paper was to optimize the system’s total energy consumption while observing task
deadlines, workflow and priority were also considered in the algorithm, making it
far more complex.

Author contributions NK: Conceptualization, methodology, writing—original draft preparation. KK:
Supervising, Data curation, writing—reviewing and editing, validation. RA: Software, visualization,
investigation. LA: Writing—reviewing and editing, validation. DJ: Writing—reviewing and editing.

Funding No funding was obtained this study.

Data availability The dataset used and analyzed during the current study is available from the corre-
sponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

 1. Nazari A, Kordabadi M, Mohammadi R, Lal C (2023) EQRSRL: an energy-aware and QoS-based
routing schema using reinforcement learning in IoMT. Wireless Netw 24:1–15

 2. Mohammadi R, Nazari A, Daneshmand B (2023) An efficient routing schema for internet of under-
water things/ocean of things. In: 2023 Wave electronics and its application in information and tel-
ecommunication systems (WECONF), pp. 1–8. IEEE

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

 3. Nazari A, Tavassolian F, Abbasi M, Mohammadi R, Yaryab P (2022) An intelligent sdn-based clus-
tering approach for optimizing iot power consumption in smart homes. Wireless Commun Mobile
Comput. https:// doi. org/ 10. 1155/ 2022/ 87833 80

 4. Samadi R, Nazari A, Seitz J (2023) Intelligent energy-aware routing protocol in mobile IoT net-
works based on SDN. IEEE Trans Green Commun Network. https:// doi. org/ 10. 1109/ TGCN. 2023.
32962 72

 5. Cisco U (2020) Cisco annual internet report (2018–2023) white paper. Cisco: San Jose, CA, USA.
10(1):1–35

 6. Goudarzi M, Wu H, Palaniswami M, Buyya R (2020) An application placement technique for
concurrent IoT applications in edge and fog computing environments. IEEE Trans Mob Comput
20(4):1298–1311

 7. Nazari A, Mohammadi R, Niknami N, Jazaeri SS, Wu J (2023) The fuzzy-IAVOA energy-aware
routing algorithm for SDN-based IoT networks. Int J Sensor Netw 42(3):156–169

 8. Qiu H, Zhu K, Luong NC, Yi C, Niyato D, Kim DI (2022) Applications of auction and mechanism
design in edge computing: a survey. IEEE Trans Cognit Commun Netw 8(2):1034–1058

 9. Sadri AA, Rahmani AM, Saberikamarposhti M, Hosseinzadeh M (2022) Data reduction in fog com-
puting and internet of things: a systematic literature survey. Internet of Things 13:100629

 10. Kumari N, Yadav A, Jana PK (2022) Task offloading in fog computing: a survey of algorithms and
optimization techniques. Comput Netw 214:109137

 11. Bansal S, Aggarwal H, Aggarwal M (2022) A systematic review of task scheduling approaches in
fog computing. Trans Emerg Telecommun Technol 33(9):e4523

 12. Nayak SC, Parida S, Tripathy C, Pattnaik PK (2022) An enhanced deadline constraint based task
scheduling mechanism for cloud environment. J King Saud Univ Comput Inf Sci 34(2):282–294

 13. Zhou G, Tian W, Buyya R (2023) Multi-search-routes-based methods for minimizing makespan
of homogeneous and heterogeneous resources in Cloud computing. Future Gener Comput Syst
141:414–432

 14. Versluis L, Iosup A (2021) A survey of domains in workflow scheduling in computing infrastruc-
tures: community and keyword analysis, emerging trends, and taxonomies. Future Gener Comput
Syst 123:156–177

 15. Chen G, Qi J, Sun Y, Hu X, Dong Z, Sun Y (2023) A collaborative scheduling method for cloud
computing heterogeneous workflows based on deep reinforcement learning. Future Gener Comput
Syst 141:284–297

 16. Ghafari R, Kabutarkhani FH, Mansouri N (2022) Task scheduling algorithms for energy optimiza-
tion in cloud environment: a comprehensive review. Cluster Comput 25:1035

 17. Ijaz S, Munir EU, Ahmad SG, Rafique MM, Rana OF (2021) Energy-makespan optimization of
workflow scheduling in fog–cloud computing. Computing 103(9):2033–2059

 18. Ajmal MS, Iqbal Z, Khan FZ, Bilal M, Mehmood RM (2021) Cost-based energy efficient sched-
uling technique for dynamic voltage and frequency scaling system in cloud computing. Sustain
Energy Technol Assess 45:101210

 19. Xu M, Buyya R (2020) Managing renewable energy and carbon footprint in multi-cloud computing
environments. J Parallel Distrib Comput 135:191–202

 20. Dayarathna M, Wen Y, Fan R (2015) Data center energy consumption modeling: a survey. IEEE
Commun Surv Tutor 18(1):732–794

 21. Hussain M, Wei L-F, Rehman A, Abbas F, Hussain A, Ali M (2022) Deadline-constrained energy-
aware workflow scheduling in geographically distributed cloud data centers. Future Gener Comput
Syst 132:211–222

 22. Li H, Xu G, Wang D, Zhou M, Yuan Y, Alabdulwahab A (2022) Chaotic-nondominated-sorting owl
search algorithm for energy-aware multi-workflow scheduling in hybrid clouds. IEEE Trans Sustain
Comput 7:595

 23. Saurav SK, Benedict S (2021) A taxonomy and survey on energy-aware scientific workflows sched-
uling in large-scale heterogeneous architecture. In: 2021 6th international conference on inventive
computation technologies (ICICT), 2021: IEEE, pp. 820–826

https://doi.org/10.1155/2022/8783380
https://doi.org/10.1109/TGCN.2023.3296272
https://doi.org/10.1109/TGCN.2023.3296272

 N. Khaledian et al.

1 3

 24. Azizi S, Shojafar M, Abawajy J, Buyya R (2022) Deadline-aware and energy-efficient IoT task
scheduling in fog computing systems: a semi-greedy approach. J Netw Comput Appl 201:103333

 25. Kishor A, Chakarbarty C (2022) Task offloading in fog computing for using smart ant colony opti-
mization. Wireless Pers Commun 127(2):1683–1704

 26. Abd Elaziz M, Abualigah L, Attiya I (2021) Advanced optimization technique for scheduling IoT
tasks in cloud-fog computing environments. Future Gener Comput Syst 124:142–154

 27. Abd Elaziz M, Abualigah L, Ibrahim RA, Attiya I (2021) IoT workflow scheduling using intelli-
gent arithmetic optimization algorithm in fog computing. Comput Intell Neurosci. https:// doi. org/
10. 1155/ 2021/ 91141 13

 28. Sellami B, Hakiri A, Yahia SB, Berthou P (2022) Energy-aware task scheduling and offloading
using deep reinforcement learning in SDN-enabled IoT network. Comput Netw 210:108957

 29. Jayanetti A, Halgamuge S, Buyya R (2022) Deep reinforcement learning for energy and time opti-
mized scheduling of precedence-constrained tasks in edge–cloud computing environments. Future
Gener Comput Syst 137:14–30

 30. Tuli S, Poojara SR, Srirama SN, Casale G, Jennings NR (2021) COSCO: Container orchestration
using co-simulation and gradient based optimization for fog computing environments. IEEE Trans
Parallel Distrib Syst 33(1):101–116

 31. Javaheri D, Gorgin S, Lee J-A, Masdari M (2022) An improved discrete harris hawk optimization
algorithm for efficient workflow scheduling in multi-fog computing. Sustain Comput Inform Syst
36:100787

 32. Ghobaei-Arani M, Shahidinejad A (2022) A cost-efficient IoT service placement approach using
whale optimization algorithm in fog computing environment. Expert Syst Appl 200:117012

 33. Ramzanpoor Y, Hosseini Shirvani M, Golsorkhtabaramiri M (2022) Multi-objective fault-tolerant
optimization algorithm for deployment of IoT applications on fog computing infrastructure. Com-
plex Intell Syst 8(1):361–392

 34. Al-Araji ZJ, Ahmad SSS, Kausar N, Farhani A, Ozbilge E, Cagin T (2022) Fuzzy theory in fog
computing: review, taxonomy, and open issues. IEEE Access 10:126931–126956. https:// doi. org/ 10.
1109/ ACCESS. 2022. 32254 62

 35. Varmaghani A, Matin Nazar A, Ahmadi M, Sharifi A, Jafarzadeh Ghoushchi S, Pourasad Y (2021)
DMTC: optimize energy consumption in dynamic wireless sensor network based on fog computing
and fuzzy multiple attribute decision-making. Wireless Commun Mobile Comput. https:// doi. org/
10. 1155/ 2021/ 99534 16

 36. Taghizadeh J, Ghobaei-Arani M, Shahidinejad A (2021) An efficient data replica placement mecha-
nism using biogeography-based optimization technique in the fog computing environment. J Ambi-
ent Intell Humaniz Comput 14:3691

 37. Iftikhar S et al (2023) HunterPlus: AI based energy-efficient task scheduling for cloud–fog comput-
ing environments. Internet of Things 21:100667

 38. Ahmed OH, Lu J, Xu Q, Ahmed AM, Rahmani AM, Hosseinzadeh M (2021) Using differential evo-
lution and Moth-Flame optimization for scientific workflow scheduling in fog computing. Appl Soft
Comput 112:107744

 39. Kaur M, Aron R (2022) An energy-efficient load balancing approach for scientific workflows in fog
computing. Wireless Person Commun 125:3549

 40. Hosseini Shirvani M, Noorian Talouki R (2022) Bi-objective scheduling algorithm for scientific
workflows on cloud computing platform with makespan and monetary cost minimization approach.
Complex Intell Syst 8(2):1085–1114

 41. Mokni M, Yassa S, Hajlaoui JE, Chelouah R, Omri MN (2022) Cooperative agents-based
approach for workflow scheduling on fog-cloud computing. J Ambient Intell Humaniz Comput
13(10):4719–4738

 42. Han P, Du C, Chen J, Ling F, Du X (2021) Cost and makespan scheduling of workflows in clouds
using list multiobjective optimization technique. J Syst Archit 112:101837

 43. Khaledian N, Khamforoosh K, Azizi S, Maihami V (2023) IKH-EFT: an improved method of work-
flow scheduling using the krill herd algorithm in the fog-cloud environment. Sustain Comput Inform
Syst 37:100834

 44. Delavar AG, Akraminejad R, Mozafari S (2022) HDECO: a method for Decreasing energy and cost
by using virtual machine migration by considering hybrid parameters. Comput Commun 195:49–60

 45. Idrees AK, Al-Yaseen WL (2021) Distributed genetic algorithm for lifetime coverage optimisation
in wireless sensor networks. Int J Adv Intell Paradig 18(1):3–24

https://doi.org/10.1155/2021/9114113
https://doi.org/10.1155/2021/9114113
https://doi.org/10.1109/ACCESS.2022.3225462
https://doi.org/10.1109/ACCESS.2022.3225462
https://doi.org/10.1155/2021/9953416
https://doi.org/10.1155/2021/9953416

1 3

An energy‑efficient and deadline‑aware workflow scheduling…

 46. Hazra A, Rana P, Adhikari M, Amgoth T (2023) Fog computing for next-generation internet of
things: fundamental, state-of-the-art and research challenges. Comput Sci Rev 48:100549

 47. Laroui M, Nour B, Moungla H, Cherif MA, Afifi H, Guizani M (2021) Edge and fog computing for
IoT: a survey on current research activities & future directions. Comput Commun 180:210–231

 48. Guevara JC, da Fonseca NL (2021) Task scheduling in cloud-fog computing systems. Peer-to-Peer
Netw Appl 14(2):962–977

 49. Peng L, Dhaini AR, Ho P-H (2018) Toward integrated cloud-fog networks for efficient IoT provi-
sioning: key challenges and solutions. Future Gener Comput Syst 88:606–613

 50. Nabi S, Ahmed M (2022) PSO-RDAL: particle swarm optimization-based resource-and deadline-
aware dynamic load balancer for deadline constrained cloud tasks. J Supercomput 78:4624

 51. Auluck N, Azim A, Fizza K (2019) Improving the schedulability of real-time tasks using fog com-
puting. IEEE Trans Serv Comput 15:372

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Navid Khaledian1,5 · Keyhan Khamforoosh1 · Reza Akraminejad2 ·
Laith Abualigah3 · Danial Javaheri4

 * Navid Khaledian
 navid.khaledian@uni.lu

 Keyhan Khamforoosh
 k.khamforoosh@iausdj.ac.ir

 Reza Akraminejad
 r.akraminejad@gmail.com

 Laith Abualigah
 aligah.2020@gmail.com

 Danial Javaheri
 javaheri@korea.ac.kr

1 Department of Computer Engineering, Islamic Azad University, Sanandaj Branch, Sanandaj,
Iran

2 Department of Computer Engineering and Information Technology, Payame Noor University,
Tehran, Iran

3 Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328,
Jordan

4 Department of Computer Science and Engineering, Korea University, Seoul 02841,
Republic of Korea

5 Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,
Esch-sur-Alzette, Luxembourg

http://orcid.org/0000-0003-3018-2821

	An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment
	Abstract
	1 Introduction
	2 Literature review
	3 Preliminaries
	3.1 Problem formulation
	3.1.1 Fog layer
	3.1.2 IoT layer
	3.1.3 Decision variables
	3.1.4 Energy consumption model
	3.1.5 Optimization objectives
	3.1.6 Response time

	4 Proposed method
	4.1 Improved PSO
	4.2 Simulated annealing algorithm
	4.3 Description of the proposed method

	5 Performance evaluation
	5.1 Impact of an increase in the number of tasks
	5.2 Impact of an increase in the number of fog nodes

	6 Conclusion
	References

