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Abstract
The Internet of Things (IoT) is constantly evolving. The variety of IoT applications 
has caused new demands to emerge on users’ part and competition between com-
puting service providers. On the one hand, an IoT application may exhibit several 
important criteria, such as deadline and runtime simultaneously, and it is confronted 
with resource limitations and high energy consumption on the other hand. This has 
turned to adopting a computing environment and scheduling as a fundamental chal-
lenge. To resolve the issue, IoT applications are considered in this paper as a work-
flow composed of a series of interdependent tasks. The tasks in the same workflow 
(at the same level) are subject to priorities and deadlines for execution, making the 
problem far more complex and closer to the real world. In this paper, a hybrid Parti-
cle Swarm Optimization and Simulated Annealing algorithm (PSO–SA) is used for 
prioritizing tasks and improving fitness function. Our proposed method managed the 
task allocation and optimized energy consumption and makespan at the fog-cloud 
environment nodes. The simulation results indicated that the PSO–SA enhanced 
energy and makespan by 5% and 9% respectively on average compared with the 
baseline algorithm (IKH-EFT).

Keywords Fog computing · Workflow scheduling · Metaheuristic algorithm · 
Particle swarm optimization · Energy efficiency · Deadline
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1 Introduction

As inexpensive computer chips develop and widespread Internet access is provided, 
the Internet of Things (IoT) has become an important part of the digital world. The 
applications of IoT encompass virtually all crucial aspects of modern life, such as 
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healthcare [1], underwater exploration [2], transportation and smart homes [3], and 
industrial and mobile systems [4]. According to Cisco [5], 15 billion IoT devices 
will be connected to the Internet by 2023, 21 billion by 2025, and 41 billion by 
2027. Statistics indicate that 18.3 zettabytes of data were generated in 2019 by IoT 
devices. Meanwhile, the International Data Corporation predicts an increase of 
400 percent in the forthcoming years, denoting a value of 73 zettabytes by 2025 
[6]. However, most IoT devices have constrained computational power and storage 
space, making deploying apps and conducting data analysis difficult. Therefore, data 
must be sent to alternative servers for processing and storage. There should be a 
particular concern for processing, storage, and transfer of this huge amount of IoT 
data when different IoT applications are considered. Despite the high storage and 
processing capability of cloud computing, it causes long delays in data transfer and 
response time due to the centralized nature of the devices and the long distances 
between them. Consequently, implementing cloud-based IoT applications may fail 
to meet a wide variety of their requirements, particularly for delay-sensitive ones. 
Therefore, it is proposed that fog computing should be applied to complement cloud 
computing [7, 8].

Due to the proximity of IoT devices to fog servers, they can provide services 
similar to those of a cloud with less delay. Therefore, fog computations efficiently 
meet the requirements of delay-sensitive applications in IoT. Moreover, a fog server 
enables temporary data storage, which helps make real-time decisions. Thus, the fog 
mitigates processing time, delay, and cost of service provision. Fog computations 
can also help reduce the energy consumed by IoT devices supplied by limited batter-
ies since data processing requires energy consumption and will decrease the energy 
consumed by an IoT device if carried out in the fog [9]. Therefore, IoT processing 
requests are sent to the fog to mitigate delay and energy. If a request requires further 
processing that the fog device cannot carry out, it will be sent to the cloud to be 
processed there [3, 10]. In fog-cloud computing, each task has different bandwidths, 
processing and storage resources, resource costs, and response times [11]. There-
fore, task scheduling involves a large number of challenges in these environments. 
Paying attention to the delay in scheduling alone cannot meet the needs of IoT appli-
cations. Since every application demands to be executed within a specific time limit, 
if it is conducted after the time limit, it may cause the application to fail. Therefore 
in this research, attention is paid to energy and deadline simultaneously.

Scheduling has been turned into a critical issue by challenges including load bal-
ancing, scalability, reliability, reallocation, concern for performance, dynamicity of 
processing resources, etc. [12, 13]. Scheduling aims to allocate tasks to resources 
to optimize resource utilization. In many IoT applications, tasks are addressed as 
workflows. A workflow considers tasks assets of interdependent ones that need to be 
performed in a particular order and with specific priorities [14]. In a workflow, task 
scheduling is represented as a directed acyclic graph (DAG). Each node indicates a 
task, and the weight denotes runtime or computational cost. The graph edges show 
the prerequisite relationships between work units and represent workflow [14, 15]. 
Most workflows in an application are scheduled with a particular purpose. The aim 
can be to reduce cost, data transfer time, utilized storage space, energy consump-
tion, ultimate runtime, or a combination thereof. Among the criteria, makespan is 
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of great significance, as it increases the productivity of computational resources and 
user satisfaction. Therefore, the algorithms attempt to mitigate the times required 
for processing and workflow implementation as far as possible or to finish workflow 
implementation before a particular deadline Workflow scheduling also has the goal 
of lowering energy usage, which lowers costs and protects the environment [16, 17]. 
Energy productivity techniques can be classified into two groups [18]. Energy pro-
ductivity is achieved at both software and hardware levels. Optimization at the hard-
ware level is carried out by replacing logic gates with low consumption, leading to 
an optimal architecture. Energy is decreased at the software level by optimizing task 
scheduling and resource consumption [19–21]. An idle server consumes 70 percent 
of its energy at the data center concerning its peak consumption [22, 23]. Research-
ers have proposed many methods and approaches to reduce energy consumption at 
data centers. One of these methods is to efficiently use the resources available at the 
data center using scheduling algorithms to organize the allocation of tasks to serv-
ers. Deadline and priority are other important criteria that need to be considered in 
the scheduling problem since some tasks and requests should be performed quickly 
within the set period in the real world. Their implementation afterward will be use-
less [24].

Given the importance of the examined criteria, the problem of energy consump-
tion concerning huge numerous IoT devices will lead to unrecoverable damages to 
the environment as stated  Co2 gas emission is increasing the energy consumption of 
datacenters. Thus, managing incoming requests from the data centers is important 
to the environment and also the budget for both business owners and users. Efficient 
scheduling, considering deadlines of workflows with parameters of energy and cost 
will overcome this issue up to a significant value.

This research seeks to consider the criteria of energy consumption, deadline, 
and task priority simultaneously in the workflow. This will increase satisfaction on 
the users’ and companies’ part, since users like their requests to be responded to 
within the shortest time and without delay, and companies providing services like 
their costs to be reduced. In contrast, huge costs are imposed on them by energy 
consumption. We suggest a successful IoT task scheduling technique that minimizes 
energy consumption and meets the deadline and task priority prerequisites to con-
front the above problems. For that purpose, we consider task scheduling as a mixed-
integer linear programming (MILP) problem to have IoT tasks performed before the 
set deadlines considering priority and minimizing energy consumption. We also 
consider deadline violation time minimization and priority in our model and com-
bine the improved PSO and SA algorithms to obtain the optimal solution. The main 
contributions of this paper are mentioned in the following:

• Presenting a mathematical model for simultaneously minimized deadline, 
makespan and optimizing energy consumption in fog nodes.

• Solving the proposed model using a hybrid two-step meta-heuristic algorithm 
(smart tasks prioritization is done by PSO and allocation by SA).

• Improvement of PSO algorithm to efficiently map the workflow to available fog 
and cloud nodes.
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The rest of the paper is organized as follows. In Sect. 2, we review the research 
literature. In Sect.  3, we discuss the problem architecture and formula. Section  4 
examines the proposed method to minimize energy consumption and reduce makes-
pan, and deadline violation gave task priority. Finally, the experimental results and 
conclusions appear in Sects. 5 and 6, respectively.

2  Literature review

In [25], a task-loading algorithm has been proposed using smart ant colony opti-
mization (SACO) inspired by the nature of metaheuristic programming for task 
offloading in IoT sensor applications in a fog environment. In [26], an alternative 
task scheduling method called AEOSSA has been suggested for IoT requests in a 
fog-cloud environment. This method is built on an artificial ecosystem (AEO). The 
authors focus on improving makespan and throughput but disregard energy con-
sumption and deadline. As stated earlier, IoT tasks are loaded in fog computing 
rather than the cloud to raise the quality of service (QoS) required by many appli-
cations. However, IoT applications are limited by the constant availability of com-
putational resources on fog computing servers since the large volume of data cre-
ated by IoT devices causes network traffic and increases overhead. As a result, task 
scheduling is a significant problem that requires effective resolution. AOAM model 
is an energy-aware model developed to solve the problem of task scheduling in fog 
computing [27]. The goal of AOAM is to maximize time intervals and improve user 
QoS. The model uses the search operators in the Marine Predator Algorithm (MPA) 
to generate various solutions and address local optimization problems. AOAM is 
validated using several parameters, including clients, data centers, hosts, virtual 
machines, tasks, and standard evaluation criteria such as energy and lifetime. The 
model is designed to be efficient and effective in addressing the task scheduling 
problem in fog computing, and it has been evaluated using rigorous testing methods.

Management and placement of smart tasks on fog platforms are challenging on a 
large scale due to the essential nature of the modern workflow and the requirements 
of a user sensitive to low energy consumption and response time. New platforms 
have emerged to mitigate the drawbacks of earlier methods, either using heuristic 
methods to achieve scheduling decisions rapidly or using methods based on artificial 
intelligence, such as reinforcement learning and evolutionary approaches to adapt 
to dynamic scenarios[28, 29]. The former methods are primarily incapable of fast 
adaptation in a highly dynamic environment, while the latter is characterized by low 
runtimes, negatively affecting response time. Thus, scheduling policies are required 
to be reactive and, therefore, efficient in an unstable environment while exhibiting 
low scheduling overhead costs. For this purpose, a gradient-based optimization 
strategy has been proposed in [30] using gradient backpropagation given the input 
(GOBI). The experiments conducted using GOBI methods with real data on fog 
applications exhibit considerable improvements over the state-of-the-art algorithms 
regarding energy consumption, response time, service level, and scheduling. In fog 
computing, workflow scheduling is an NP-hard issue that aims to assign the best 
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possible set of resources to the workflow while considering various goals, including 
deadlines, costs, energy, and QoS.

Fog providers, however, can experience high IoT network loads, breaking the 
service-level agreement (SLA). A hidden Markov model (HMM) has been used in 
[31] to predict the availability of each fog computing provider given variables like 
the volume of requests received at each node, missed workflow deadlines, and fog 
task loading in cloud computing. The architecture is made up of several fog comput-
ing providers. The unsupervised Baum-Welch approach trains the HMM, and the 
Viterbi algorithm determines the likelihood that each node is reachable. Then, the 
probability of access to fog computing providers is used to select one to schedule 
IoT workflows. The rigorous testing done using iFogSim shows that the proposed 
plan can perform better than the state-of-the-art by drastically lowering the number 
of tasks loaded in cloud computing, missed workflow deadlines, and SLA breaches.

The fog computing paradigm has evolved as a distributed computational approach 
for application presentation using fog nodes nearby IoT devices [28]. The amount of 
data needed to process IoT services has exponentially increased due to the quick 
development of IoT-based applications and the advent of 5G networks. Since IoT 
applications are designed as multiple IoT services with various QoS requirements 
that can be deployed at fog nodes with various resource capabilities in the fog eco-
system, it is difficult to devise a plan for optimal service placement. [32] makes a 
good case for an effective approach to the placement of IoT services based on auton-
omous IoT application establishment in fog infrastructure. The suggested method 
uses the metaheuristic whale optimization algorithm to design a strategy for effec-
tive service placement while monitoring the IoT QoS requirements and the capabili-
ties of the available fog nodes (WOA). To further achieve the required IoT service 
placement plan while satisfying the QoS criteria of each service, an evolutionary 
mechanism uses throughput and energy usage as objective functions. In order to 
deliver useful services at the network edge and complement the cloud computing 
paradigm, fog computing has just been created. Placing applications in fog infra-
structures is difficult due to the heterogeneity of the fog computing nodes, which 
calls for effective management to suit the application’s needs. A bi-objective task 
allocation mechanism for fog computing environments has been suggested in [29]. 
This approach aims to appropriately position the task modules on the underlying 
fog devices, considering the security constraints and critical application levels. The 
non-dominated sorting genetic algorithm (NSGA-II) is used to solve the allocation 
problem, which is presented as a bi-objective knapsack algorithm. The simulation 
findings show that, in comparison to previous metaheuristic-based processes, the 
suggested solution boosts resource consumption and the ratio of service accept-
ance while decreasing service delay and energy usage. The simulation results show 
how the suggested algorithm may be used to deploy applications in a fog computing 
environment in such a way as to maximize their performance, throughput, and rate 
of security satisfaction.

Recent researchers have focused on efficient methods involving the capabilities 
of an edge network to run and support IoT applications and the relevant require-
ments. To meet the application requirements successfully while using the power of 
cloud computing efficiently, smart scheduling approaches are needed to optimize 
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IoT application task scheduling in computational resources. In [30], The ideal solu-
tion for IoT application job scheduling has been specified. However, when applica-
tion components were set up improperly on the fog computing infrastructure, band-
width and resource loss would be increased, resulting in high energy usage and poor 
QoS. In [33], the authors considered reducing bandwidth loss given the dependence 
of application components in their distributed establishment. On the other hand, 
service reliability will decrease if application components are established at a sin-
gle node due to a power consumption management perspective. In order to address 
this point of failure and improve the application’s resistance to it, a mechanism is 
described. After that, a multi-objective optimization algorithm’s component setup 
is developed with the goal of minimizing energy consumption and overall delay for 
each pair of application-relevant components. A multi-objective cuckoo search algo-
rithm (MOCSA) is suggested to resolve the hybrid optimization issue. The algo-
rithm is tested under various circumstances compared to several contemporary tech-
niques for validation reasons. Optimal use of the node energy has always been one 
of the greatest challenges in a wireless sensor network (WSN). Another crucial issue 
is lengthening network life, given the limited lifetimes of nodes on these networks 
and energy management. Two computational distributions have been presented for 
a dynamic wireless sensor network [34, 35]. An optimistic and a blind strategy are 
used in this fog-based system to divide the computational load among fog networks. 
The distribution, map, transfer, and combination (DMTC) processes comprise the 
four main steps of the approach given. Based on the suggested distribution methods, 
fuzzy multiple-attribute decision-making (fuzzy MADM) is also utilized for cluster-
ing and network routing. The outcomes show that the optimistic method outperforms 
the blind method and consumes less energy, especially across wide-area networks.

When many of an IoT user’s new applications are connected to fog nodes, load 
examination becomes an issue in fog computing. The huge amount of data that 
transfers from IoT devices to remote cloud servers causes delay and excessive use 
of bandwidth [32]. An Internet-based distributed computational model called fog 
computing has emerged for the purpose of storing datasets produced by IoT devices 
around the user. The method facilitates the allocation of the required resources by 
removing inactive services. Since an IoT device constantly generates large amounts 
of data, it is challenging to place it at a storage fog node with different capabilities 
of decreasing delay and data access cost and increasing dataset reliability and acces-
sibility while meeting the QoS requirements as a task. A data placement mechanism 
based on a metaheuristic algorithm has been proposed in [36] for data-based IoT 
applications in the fog environment using biogeography-based optimization (BBO). 
Additionally, for the issue of data placement in the fog ecosystem, a different frame-
work is created to represent the transmission of data copies between IoT devices 
and storage fog nodes. Energy consumption is an essential factor that can directly 
affect the costs of  CO2 storage and emission in a fog environment. It can be reduced 
using efficient scheduling approaches where tasks are drawn on the best resources 
relevant to several contradictory objectives [37]. To address these issues, In [38], an 
opposition-based hybrid discrete optimization algorithm referred to as DMFO-DE, 
a discrete version of the moth-flame optimization (MFO) algorithm based on the 
opposition (OBL) is presented and combined with the differential evolution (DE) 
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algorithm to improve convergence speed. The problem of local optima in DMFO-
DE for workflow scheduling in a fog computing environment is resolved using the 
methods of dynamic voltage and frequency scaling (DVFS). The order in which 
activities are completed in a workflow is determined using the heterogeneous earli-
est finish time (HEFT) method. By using fewer virtual machines (VMs) and estab-
lishing connections between related processes, the workflow scheduling strategy 
aims to reduce energy usage in the scheduling process.

The authors of [39] have solved the workflow scheduling problem using a hybrid 
algorithm involving plant growth optimization, simulated annealing, and water cycle 
optimization to reduce cost, delay, and energy consumption in the cloud and fog 
clusters. First, the plant growth optimization algorithm obtains the appropriate clus-
ters based on cost and energy. Resources are then selected to be allocated to tasks 
based on the simulated annealing algorithm. Next, tasks immigrate between nodes 
to balance the load based on the water cycle optimization algorithm. Workflow 
scheduling has been formulated in [40] as a bi-objective problem in cloud comput-
ing. A hybrid algorithm involving simulated annealing and the iteration technique 
is used to solve the problem. Task priority is based on the initial population on the 
HEFT approach, including upward, downward, and level ranking, which are iter-
ated. The authors of [41] have addressed the multi-objective workflow scheduling 
problem with a focus on the objectives of finish time, response time, and cost. They 
propose the multi-agent system technique based on the Genetic Algorithm to solve 
the problem. The approach involves the conversion of the workflow graph into a set 
of sub-workflows, which can be implemented using unique fog and cloud nodes, 
each identified as an agent. In [42], a heuristic algorithm involves displaying task 
priorities and selecting resources to solve the multi-objective workflow scheduling 
problem in the cloud computing environment to reduce cost and finish time. Upward 
ranking prioritizes tasks, and resources are selected based on Pareto ranking and 
crowding distance. Navid et  al. have also presented a hybrid improved krill herd 
algorithm and an earliest finish time technique called IKH-EFT. Different naviga-
tions are carried out there in the workflow task prioritization step based on the krill 
movements and the DCD, SCD, and LCD methods, leading to the smart generation 
of dependent tasks. The authors use the earliest finish time technique in the task 
allocation step and the DVFS technique to reduce energy consumption. The results 
indicate simultaneous decreases in energy consumption makespan and monetary 
costs in the fog-cloud environment [43].

For instance-intensive workflows in the cloud environment, a heuristic algorithm 
named (HDECO) has been developed to optimize energy and cost [44]. An intelli-
gent threshold detector was created to detect CPU consumption and alter the thresh-
old of the CPU in order to prevent the powering on or off of several servers. Despite 
the threshold detector’s distinctiveness, neither a meta-heuristic methodology nor 
scientific procedures were studied. Researchers in [45] investigated a lossless elec-
troencephalogram (EEG) data compression technique. By employing lossless com-
pression, k-means clustering, and Huffman encoding, the suggested method lowered 
the amount of EEG data provided to the fog gateway. It minimized the size of the 
IoMT EEG data and used Naive Bayes to determine the patient’s epileptic seizure 
state. Through measurements and comparative data, the approach’s efficacy was 
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demonstrated, ensuring accurate epileptic seizure detection. Despite their novelty 
method in a fog environment case study was not in the scheduling field.

In [45] sensor devices clustered using DBSCAN method applied Cuckoo Sched-
uling Algorithm (CSA) at cluster heads. CSA scheduled sensor nodes for optimal 
coverage, with cluster head pooling and CSA executed periodically. They studied 
energy efficiency without cost parameters. In order to maintain coverage and extend 
the lifetime of Wireless Sensor Networks (WSNs), an Energy-efficient Particle 
Swarm Optimization for Lifetime Coverage Prolongation (EPSOLCOP) protocol 
was presented. The protocol broadcasted the protocol among sensor nodes and sub-
divided the target sensing field into smaller subfields. In order to choose the opti-
mum sensor nodes to cover the sector, ensure low energy consumption, and maxi-
mize WSN lifetime, the cluster head used PSO. According to the simulation results, 
EPSOLCOP was competitive and reached good coverage ratios while using less 
energy [46].

To increase the lifetime and coverage of wireless sensor networks, [45] presented 
the distributed genetic algorithm for lifetime coverage optimization (DiGALCO). 
It incorporated genetic algorithm optimization based on sensor activity scheduling, 
distributed cluster head selection, and virtual network subdivision. Cluster heads 
pick the active sensors to be monitored in rounds of DiGAfLCO work. Experimental 
results showed DiGALCO can prolong WSN lifetime and improve coverage perfor-
mance. To improve the transmission and lifespan of IoT sensor networks, an Energy-
efficient Transmission Optimization Protocol (ETOP) was presented as a solution to 
problems with transmitted readings, energy use, and network longevity in a growing 
number of sensor nodes in IoT. Before transmission, ETOP used correlation cluster-
ing based on reduction algorithms to eliminate redundant data. As a result, ETOP 
outperforms other techniques [47]. Authors in [48–51] also studied different prob-
lems in IoT and fog for optimizing energy with different methods.

Researchers looked at the layered IoT architecture, assessment criteria, and appli-
cations of fog computing over the previous 4 years. They discussed heterogene-
ous vehicular fog networks and vehicular fog frameworks and strategies. The study 
examined issues with interoperable processing and communication in fog networks 
as well as potential remedies [46]. In [47] study on multi-agent systems (MAS) in 
IoT applications and utilizing them for different purposes was done. They proposed 
that MAS can be embedded into IoT layers and optimize energy consumption. A 
new Energy-aware Data Offloading algorithm (EaDO) was proposed to improve 
latency and energy. Authors used scheduling based on queuing rules and Hall’s 
graph theory [48].

3  Preliminaries

IoT devices are geographically distributed at different places, generate requests 
requiring plenty of computation, and are sensitive to delay. These devices send 
their data to the higher layer to be processed at that level [47]. Delay-sensitive 
requests call for (virtually) real-time processing. For instance, analyzing the 
data generated by a health monitoring system has to be urgent, as delays in such 
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systems can have disastrous consequences. An application is a collection of 
related tasks that must be completed in a given sequence and with a specific order 
of priority. The fog layer is an intermediary one that is situated near the terminal 
layer devices, between IoT devices and cloud data centers. There is also a par-
ticular node in this layer, known as the fog-breaker, responsible for central man-
agement and task scheduling. It is responsible for collecting user requests and 
managing resources at the fog-cloud nodes. This node also generates the most 
appropriate scheduling for workflows. The cloud, which uses powerful comput-
ers for processing and storage and demonstrates tremendous efficiency, is the 
top layer in this design. It offers services for heavy workloads, computers, and 
equipment for fast, secure data storage. Given those cloud layer servers are far 
away from data resources, processes may be sent with some delay. Therefore, it 
is suggested that delay-insensitive tasks with high complexity but no particular 
deadline should be performed in this layer [48]. Delay-tolerant tasks are typically 
delivered to the cloud environment, whereas delay-sensitive tasks are typically 
sent to the fog environment.

Fig. 1  Three-layer structure
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Figure 1 shows the architecture of the proposed method. It involves three lay-
ers: IoT, fog, and cloud [49]. The IoT layer includes smart devices (for example, 
sensors, smart cars, home appliances, and smartphones).

Table 1 shows the notations used in this paper. Attempts have been made to 
use standard notations.

3.1  Problem formulation

Based on the architecture described above, we formulate each part and then 
describe the mathematical model of the problem by combining each part.

3.1.1  Fog layer

The fog layer is composed of several heterogeneous devices. These devices and 
the relations between them can be considered as a graph G = (�N;L) , where 
�N =

{
�N1, �N2,… , �Nm

}
 is a set of m fog devices, and L =

{
eij|i, j ∈ �N

}
 is a 

set of links between the �N s. Each �Ni ∈ �N involves the following features[24]:

• CPU processing power of �Nc
i
 MIPS (million instructions per second),

• Energy consumption of �Nact
i

 Watts in the active mode,
• Energy consumption of �Nidl

i
 Watts in the idle mode.

Moreover, each link eij ∈ L is associated with two major features:

• Bandwidth of eb
ij
 Megabits per second,

• Propagation delay of ep
ij
 Milliseconds.

3.1.2  IoT layer

A workflow can be considered a set of tasks loaded in a particular period from 
IoT devices onto a fog controller (FC). The Tak = Tas

k
, Tad

k
, Ta

p

k
, Tain

k
, Taout

k
, Ta

f

k
 

quadruple defines each task, where Tas
k
 is task size in MIPS, Tad

k
 is the required 

deadline in milliseconds, Tap
k
 is task priority (with a larger number denoting a 

higher priority), Tain
k

 is the input file size in kilobytes, Taout
k

 is output file size in 
kilobytes, and Taf

k
 is parent task number (zero for initial tasks) [24].
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3.1.3  Decision variables

Three decision variables are used to allocate tasks to fog devices. The first one is 
a binary matrix Xm×n that indicates how tasks are assigned to fog devices and is 
defined as follows:

The second variable specifies if a task is processed at the same fog device as 
those depending on it. In that case, the transfer cost will be zero; otherwise, this 
cost will also need to be considered. For each task Tak , therefore, a binary varia-
ble yk

ij
∈ {0, 1} indicates whether the link eij ∈ L is selected to transfer the task. 

This variable is defined as follows:

Moreover, a binary variable zkl ∈ {0, 1} is used to compare the priorities of two 
tasks Tak and Tal . For this purpose, we set zkl = 1 if task Tak is prioritized over Tal , 
and we set zkl = 0 otherwise.

3.1.4  Energy consumption model

In most research, a significant measure is an energy that FNs use to do all tasks. It 
is computed based on the amount of energy used in both active and idle modes. The 
active period of FNi is the time that it requires to process all the tasks allocated to it, 
calculated using the following formula.

The idle time �Ni can be calculated given the maximum runtime of each �N and 
makespan ( MS ), as follows.

Therefore, the estimated consumed energy FNi is as follows based on the power 
consumption specifications and the active and inactive periods.

(1)
xik =

{
1 if task Tak is assigned to �Ni

0 otherwise

∀i ∈ �N, ∀k ∈ Ta

(2)
yk
ij
=

{
1 if link eij is chosen for routing Tak
0 otherwise

∀i, j ∈ �N, ∀k ∈ Ta

(3)Ai =
∑

∀k∈Ta

(
dexe
k

× xik
)
,∀i ∈ �N

(4)
MS = max

∀i∈�N

(
Ai

)

�i =
(
MS − Ai

)
,∀i ∈ �N

(5)�i =
(
Ai × �Nact

i
+ �i × �Nidl

i

)
, ∀i ∈ �N
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The following Equation can calculate the system’s overall energy consumption as 
the sum of the energy used by each �N.

3.1.5  Optimization objectives

Ta =
{
Ta1, Ta2,… , Tan

}
 is a set of tasks concerning a flow received from IoT 

devices, and there is a set of heterogeneous �N s �N =
{
�N1, �N2,… , �Nm

}
 . The 

problem involves a mapping of the tasks to the �N s ( � ∶ T → F ), while energy 
consumption is optimized and the task execution deadlines are satisfied. Therefore, 
the aim is to minimize �tot provided that Rk ≤ Tad

k
 for each task k. Scheduling should 

occur so that each task is performed by one and only one �N , and the algorithm 
ensures task deadline satisfaction. In the proposed method, we should seek to mini-
mize deadline violation time upon its occurrence, i.e., when the deadline of a task 
is not observed, considering priority. Thus, tasks with high priorities should prefer-
ably not exceed the set deadlines, and the violation should be minimal if unavoid-
able. Consequently, we add Vtot minimization to our optimization problem, where 
the violations of the set deadlines are considered based on priority. Therefore, the 
objective function is defined as follows. Where � and � are weights of two objective 
parameters of energy and deadline. These weights are modified dynamically during 
simulations.

3.1.6  Response time

The response time for the task Tak sent to the device �Ni is influenced by fac-
tors such as propagation delay, transfer time, execution time, and waiting time in 
the queue. The propagation delay upon the transfer of task Tak to the device �Ni is 
obtained as follows.

Transfer time, including the time spent to transfer the input file of size Tain
k

 , from 
FC to �N ( �Ni ∈ �N ) and to resend the output file of size Taout

k
 , from �Ni to FC can 

be calculated as follows.

(6)�
tot =

∑

∀i∈F

�i

(7)min(� ∗ Vtot + � ∗ �
tot)

(8)d
prp

k
=

∑

∀eij∈L

(
2 × e

p

ij
× yk

ij

)
, ∀k ∈ Tak
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A major factor affecting the system response time is the CPU execution time. The 
execution time of Tak is specified through the division of task size ( Tak ) by the pro-
cessing power of the fog device CPU.

We consider two limitations of the devices. Firstly, each �N can process only one 
task at a time. We also assume that the tasks are non-preemptive. A task is continu-
ously executed until finished once placed on a particular �N . When a task arrives at 
an �N , therefore, it needs to wait in the �N queue until the previous tasks allocated 
to the �N are completed. On that basis, the waiting time for the task Tak is as follows.

Therefore, the response time of the task Tak is as follows.

Next, we calculate the number of IoT tasks that meet the relevant deadlines ( Ns ) and 
then the total deadline violation time for the set of n tasks sent to FC in a particular 
period.

We use sk ∈ {0, 1} to indicate whether the deadline of the task Tak is satisfied.

Therefore, the tasks with satisfied deadlines and their percentage can be calculated.

S% represents the percentage of IoT tasks that satisfy the deadline requirement, and 
Sp% indicates the percentage of those considering the priorities as well, where Np

s  and 
Np are as follows

(9)dtx
k
=

∑

∀eij∈L

Tain
k
+ Taout

k

eb
ij

× yk
ij
, ∀k ∈ Ta

(10)dexe
k

=
∑

∀i∈�N

Tas
k

�Nc
i

× xik, ∀k ∈ Ta

(11)dwt
k

=
∑

∀l∈Ta

∑

∀i∈�N

(
dexe
l

× zkl × xik × xil
)
, ∀k ∈ Ta

(12)Rk = d
prp

k
+ dtx

k
+ dexe

k
+ dwt

k
, ∀k ∈ Ta

(13)Ns =
∑

∀k∈Ta

sk, ∀k ∈ Ta

(14)sk =

{
1 if Rk < Tad

k

0 otherwise
, ∀l, k ∈ Ta

(15)S% =
Ns

n

(16)Sp% =
N

p
s

np
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N
p
s  denotes the deadline violation time of the task Tak considering the priorities, and 

Np measures the quality of task scheduling by calculating deadline violation time con-
sidering priority. Finally, the total violation time of the tasks given the priorities can 
obtain by Eq. (20).

4  Proposed method

The proposed method uses a hybrid of the simulated annealing (SA) optimization 
algorithm and the particle swarm optimization (PSO) algorithm, which are exam-
ined below.

4.1  Improved PSO

Particle swarm optimization is a smart optimization algorithm based on particles’ 
collective intelligence. To obtain the best position of each particle, this algorithm 
uses its best position in the past and its best global position. Thus, all particles help 
each other to achieve the best position. It has been found in many problems to be 
a better solution than heuristic and other smart metaheuristic algorithms, exhibit-
ing better performance. It is a metaheuristic method used in optimization problems 
with continuous functions[50]. There are three vectors for each particle in the parti-
cle swarm optimization algorithm: the current position of the particle ( P ), particle 
speed (v), and the best position experienced so far by the particle ( Pbest ). Moreover, 
the best position found by all particles is represented by PGbest . Movement of a par-
ticle combining these vectors helps to explore the problem space further, and con-
sideration of PGbest causes it to converge over time. The following positions of the 
particles are specified using the particle velocity equation. There are three important 
parts to the Equation: current particle velocity (v(t)) , change in particle velocity and 
its direction toward the best personal experience C1 × rand ×

(
Pbest(h, t) − P(h, t)

)
 , 

(17)Np
s
=

∑

∀k∈Ta

sk × Ta
p

k
, ∀k ∈ Ta

(18)Np =
∑

∀k∈T

Ta
p

k
,

(19)�k =
(
max

(
0,Rk − Tad

k

)
× Ta

p

k

)
,

∀k ∈ Ta

(20)Vtot =
∑

∀k∈Ta

�k
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and change in particle velocity and its direction toward the best group experience 
C2 × rand ×

(
PGbest(t) − P(h, t)

)
 . Parameters  C1 and  C2 specify the importance and 

weight of collective intelligence, The fact that the above parameters are constant is a 
very important factor. They stand for the significance of particle velocity change and 
its direction with respect to the best individual experience and the significance of 
particle velocity change and its direction concerning the best collective experience, 
respectively. Therefore, we can calculate importance instead of applying a constant 
value. Thus, we update the Equation as follows:

where C′
1
 is the probability that the particle undergoes no change in direction and 

moves along its own path, C′
2
 is the probability that the particle undergoes some 

change in direction and is directed toward the best personal experience, C′
3
 is the 

probability that the particle undergoes some change in direction and is directed 
toward the best group experience. In fact, the C′

1
 , C′

2
 , and C′

3
 factors are probabilities 

that are set to the possibility that the optimal particle is located at different posi-
tions given the objective function. They indicate the rate of maintaining the current 
velocity, the rate of movement toward the local optimum, and the rate of movement 
toward the global optimum. Therefore, these probabilities are expressed by the fol-
lowing equations.

(21)
v(h, t + 1) = C

�
1
× v(h, t) + C

�
2
×
(
P
best(h, t) − P(h, t)

)
+ C

�
3
×
(
P
Gbest(t) − P(h, t)

)

(22)C
�
1
=

(
�
tot

Position
+ �

tot

Best Position
+ �

tot

Best Global Position

)

�
tot

Position

(23)C
�
2
=

(
�
tot

Position
+ �

tot

Best Position
+ �

tot

Best Global Position

)

�
tot

Best Position

(24)C
�
3
=

(
�
tot

Position
+ �

tot

Best Position
+ �

tot

Best Global Position

)

�
tot

Best Global Position

Fig. 2  A sample DAG



 N. Khaledian et al.

1 3

Given the above probabilities, particles move toward more probable positions, i.e., 
they involve better objective functions, thereby facilitating the achievement of optimal-
ity for the conditions set by constant factors.

4.2  Simulated annealing algorithm

Simulated annealing (SA) is a simple, efficient heuristic optimization algorithm for 
solving optimization problems in large search spaces. It is preferable in problems where 
the search space is discrete. Obtaining an approximate solution for the global optimum 
is more important than an exact solution for the local optimum within a limited period 
[40]. This algorithm has been developed to enable escape from local optima. It may 
initially prefer fewer proper solutions to better ones but converges to global optima over 
time by avoiding local ones.

4.3  Description of the proposed method

In the proposed method, each particle is considered as a matrix for task-resource 
assignment. The matrix consists of m rows (equal to virtual machines) and n columns 
(equal to Tasks). Each task is assigned to the VM with the highest pi value for that col-
umn. �Ni is allocated to the allowed task Ta via the following Equation.

Ta , the selected allowed task is obtained via the following Equation:

where TaAllowed =

�
k ∈ Ta�Taf

k
= 0 or

∑
i∈�N x

i,Ta
f

k

= 1
�

 . That is, a fog resource 
can be allocated to a task while observing the workflow hierarchy only if it is located 
at the root or its parent has undergone resource allocation. Once a task is performed, 

(25)
xi,Ta =

{
1 if i = argmax

j∈FN

Pj,Ta

0 otherwise

∀i ∈ �N

(26)Ta = argmax
k∈TaAllowed

(
max
j∈FN

Pj,k

)

Table 3  Matrix x for a particle

FOG NODE TA0 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9

FN1 1 0 0 0 0 0 0 0 1 1
FN2 0 0 0 0 0 0 0 1 0 0
FN3 0 0 1 1 0 0 1 0 0 0
FN4 0 1 0 0 1 1 0 0 0 0
FN5 0 0 0 0 0 0 0 0 0 0
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all the tasks that depend on it are located in TaAllowed , and those that are not or 
have other parents besides this one (multi-parent tasks) wait for the other parents to 
be performed. For instance, let us consider the DAG in Fig. 2, which will be imple-
mented on a network with five fog nodes. If we randomly generate a particle with 
components lying within the range from − 10 to + 10, it can assume the following 
values which is shown in Table 2. 

The proposed algorithm first places Ta0, the only parentless node, on the list 
of allowed tasks and allocates it to FN1, for which the particle value is maximum 
in the column for this task. Therefore, x1,0 = 1 and TaAllowed = {1, 2} . Next, the 
maximum values in the Ta1 and Ta2 columns are calculated, and the node with 
the highest value is assigned to the relevant task. Thus, Task 1 is selected, for 
which FN4 is considered. Therefore, x4,1 = 1 and TaAllowed = {2, 3, 4} . The pro-
cedure continues until no more task remains. Consequently, the matrix x is dis-
played in Table 3.

Dijkstra’s algorithm forms the matrix y, and the matrix z is completed in order 
of assignment. That is, the task to which FN is allocated is prioritized over those 
that are still waiting for their turns ( zij = 1 , if i is allocated to a node, and j is still 
in the waiting queue). Therefore, the matrix z is indicated in Table 4.

According to matrix z, the tasks are performed in this order: 0, 1, 3, 4, 7, 2, 6, 
9, 5, and 8.

After the implementation of the PSO algorithm, it is time to implement the SA 
algorithm. At each step of the PSO, if the global optimum changes, for minimiz-
ing Vtot, which also leads to the improvement of the termination time, the steps of 
the SA algorithm are performed as follows:

1. The candidate solution (sol’) is created based on the current location of PGbest.
2. If Vtot is less than the candidate solution and there is no increase in �tot , this solu-

tion replaces PGbest and if Vtot is less than Vtot with a probability, it will replace 
PGbest.

3. Return to the second step if the internal stop condition is not reached.
4. Decrease in temperature.
5. Return to the second step if the external stop condition is not reached.

Table 4  Matrix z for a particle 0 1 2 3 4 5 6 7 8 9

0 0 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1
2 0 0 0 0 0 1 1 0 1 1
3 0 0 1 0 1 1 1 1 1 1
4 0 0 1 0 0 1 1 1 1 1
5 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 1 0 0 1 1
7 0 0 1 0 0 1 1 0 1 1
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 1 0
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Here Pseudocode for proposed PSO–SA algorithm is explained.

6.1

6.2

6.3

6.4

6.5

6.6

5  Performance evaluation

To demonstrate the effectiveness of the proposed algorithm, we compared it to 
FCFS, EDF, GFE, Detour, PSG [24], and PSG-M [24]. It should be noted that these 
algorithms are slightly modified concerning their initial conditions to be capable of 
implementing workflow tasks. In other words, scheduling is applied only to tasks 
first in the execution queue or whose parents had been executed.

For experimentation, as in [20], we took into account a fog environment made up 
of numerous heterogeneous, interconnected FNs with unpredictable network topol-
ogy and a variety of tasks imported from IoT devices to schedule the Fs. The number 
of Fs varies from 30 to 90 for various trials, and the number of IoT jobs varies from 
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100 to 500. The CPU processing capacity of each is uniformly spread from 2000 to 
6000 MIPS, and its active mode power consumption is expected to range between 
80 and 200 watts arbitrarily to maintain the heterogeneity of the Fs. While the links’ 
capacity is set to 1000 megabits per second, the propagation latency between the Fs 
is anticipated to range from 1 to 3 ms. It is believed that two different IoT task kinds 
assume a strong relationship between their sizes and necessary timeframes [51]. For 
one type, the task size is randomly set from 100 to 372 MI, while the task deadline 
is assumed to range uniformly from 100 to 500 ms. For the other type, the values 
range from 1028 to 4280 MI and 500 to 2500 ms, respectively. For both types, input 
and output file sizes are randomly set to range from 100 to 10,000 KB and 1 to 
1000 KB, respectively. Task priority is assumed to be a random value between zero 
and one. For the proposed algorithm, we need to set the number of PSO iterations, 
number of particles, number of internal SA iterations, temperature reduction factor, 
and initial temperature by conducting extensive experimentation. The values bring-
ing about proper results include 1000, 200, 15, 0.99, and 0.025, respectively. All the 
simulations are coded in MATLAB R2022a. The experiments are conducted on a 
computer with a dual Intel Xeon X5650 2.66 GHz processor, 64 gigabytes of RAM, 
and the Windows 10 operating system. To present the results with high reliability, 
each experiment is replicated twenty times, and the mean values are reported. It 
should be noted that the values of the tunable parameters of PSG and PSG-M are 
adopted from [24] to enable examination of the performance of the algorithms. For 
evaluation, therefore, we use criteria such as energy consumption ( �tot ), total dead-
line violation time given the Vtot priority, makespan, and the percentage of IoT tasks 
satisfying their deadline requirements given the priority ( Sp%).

5.1  Impact of an increase in the number of tasks

Figure 3 shows how the number of tasks affects algorithm performance. Here, we 
assume the number of �N s to be constantly 60. As can be observed in Fig. 3a, the 
simulation results demonstrate that an increase in the number of tasks imposes a 
heavier load on the system in general. Therefore, a larger number of tasks miss 
their deadlines, which raises task deadline violation time. As a result, the energy 
consumption and makespan of the system also increase. Of course, the proposed 
algorithm observes deadlines more properly than the other strategies. This is more 
evident when task priority is considered, as the proposed algorithm involves con-
sideration. Figure  3b shows the percentage of tasks that observe deadlines, while 
Fig. 3c shows the number of tasks with violated deadlines. As observed, the crite-
rion assumes smaller values in the proposed algorithm than in the competitors, even 
smaller than one-tenth of the total number of tasks. Another interesting observa-
tion concerning our algorithm is that it significantly improves makespan over the 
other methods. This is shown in Fig.  3d. The proposed algorithm seeks to obtain 
�N so as to present minimum violation time for a particular task. Figure 3e shows 
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the system energy consumption. It should be noted that the makespan of a system 
directly affects energy consumption. Therefore, makespan is expected to be mini-
mized once energy is.

Fig. 3  Comparison of the performance of the algorithms with a varying number of tasks; simulation 
results for 60 �N s: a deadline satisfaction, b deadline satisfaction percentage with priority considera-
tions, c task deadline violation, d makespan, e total energy consumption
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5.2  Impact of an increase in the number of fog nodes

This experiment aims to discover how the number of FNs affects the efficiency of the 
compared algorithms. In this case, there are 300 tasks in total, which is a constant 
value. Figure 4 shows the simulation results. Part c of the figure indicates that more 
tasks are executed before their deadlines as the number of �N s increases, which 

Fig. 4  Comparison of the performance of the algorithms with a varying number of fog nodes; simulation 
results for 300 tasks: a deadline satisfaction, b deadline satisfaction percentage with priority considera-
tions, c task deadline violation, d makespan, e total energy consumption
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is expected as addition of more �N s to the system raises the number of available 
resources. Given task prioritizing and resource awareness, the suggested algorithm 
has a significantly better percentage of tasks meeting their deadline criteria than the 
alternatives. Specifically, the algorithm satisfies the deadlines of all the tasks when 
the number of �N s is 60. Figure 4b shows this in the case where priority is consid-
ered, complicating the problem further. Our algorithm exhibits considerable perfor-
mance here compared to the others since it focuses on task deadlines in the second 
step of fitness improvement. In part c of Fig. 4, it can be observed that total violation 
time considerably decreases for all the algorithms as the number of �N s increases. It 
is again clear that the proposed algorithm achieves the minimum number of deadline 
violations faster than the compared ones. Firgure 4d and Fig. 4e show the simulation 
results regarding energy consumption and makespan, where the proposed algorithm 
is far better than the others.

Experimental results for different number of tasks are listed in Tables 5, 6, 7, 8, 9.    

Table 5  Average percentage optimization of %S for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization S%

FCFS 80 68.23 64.95 44.89 40.21 24.09 45.24 49.48 76.01 62.37
EDF 87.58 69.5 66.93 47.71 46.8 13.35 42.59 45.06 65.60 39.51
Gfe 86.31 71.75 67.49 42.77 41.33 15.02 38.12 43.86 84.73 57.97
Detour 91.52 82.89 73.97 60.82 50.63 8.47 19.56 31.26 29.91 28.96
PSG 96.88 96.85 92.72 68.15 59.52 2.47 2.32 4.71 15.94 9.69
PSG-M 98.43 98.25 96.53 74.35 61.21 0.85 0.87 0.58 6.27 6.67
IKH-EFT 87.3 70.2 73.2 51 42.1 13.71 41.17 32.64 54.92 55.08
PSO–SA 99.27 99.1 97.09 79.01 65.29

Average 18.90 43.21 41.06 65.46 58.73

Table 6  Average percentage optimization of %SP for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization SP%

FCFS 47.7 43.2 37.7 27.6 16.2 88.89 95.83 104.24 94.57 201.85
EDF 48.4 42.5 41.3 30.9 22 86.16 99.06 86.44 73.79 122.27
Gfe 57.8 41.2 45.4 21.9 21.2 55.88 105.34 69.60 145.21 130.66
Detour 80 46.7 36.7 26.5 27.6 12.63 81.16 109.81 102.64 77.17
PSG 78.7 68.5 61.9 41.3 29.3 14.49 23.50 24.39 30.02 66.89
PSG-M 85.5 76.7 71.5 47.8 38.2 5.38 10.30 7.69 12.34 28.01
IKH-EFT 89.3 79.2 74.2 50 43.1 0.90 6.82 3.77 7.40 13.46
PSO–SA 90.1 84.6 77 53.7 48.9

Average 37.76 60.29 57.99 66.57 91.47
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Table 7  Average percentage optimization of %Vtot for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization  Vtot

FCFS 6.1 78.06 177.2 378.48 562.02 71.31 97.57 99.55 95.43 90.54
EDF 5.8 45.98 122.4 303.37 440.5 69.83 95.87 99.35 94.30 87.93
Gfe 4.7 24.05 81.02 232.49 355.27 62.77 92.10 99.01 92.56 85.04
Detour 4.1 22.36 21.09 100 238.82 57.32 91.50 96.21 82.70 77.74
PSG 3.2 4.5 2.52 43.46 99.57 45.31 57.78 68.25 60.19 46.61
PSG-M 2.9 3.1 1.75 29.11 85.25 39.66 38.71 54.29 40.57 37.64
IKH-EFT 2.5 2.5 1.28 22 65 30.00 24.00 37.50 21.36 18.22
PSO–SA 1.75 1.9 0.8 17.3 53.16

Average 53.74 71.07 79.16 69.59 63.39

Table 8  Average percentage optimization of Makespan for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization Makespan

FCFS 2.96 6.28 6.58 8.48 11.2 68.55 85.11 74.47 74.06 73.75
EDF 5.04 5.86 7.1 9.17 10.5 81.53 84.04 76.34 76.01 72.00
Gfe 0.948 2.07 2.06 3.33 4.1 1.79 54.83 18.45 33.93 28.29
Detour 0.897 1.8 2.34 3.11 3.93 − 3.79 48.06 28.21 29.26 25.19
PSG 0.948 1.75 2.12 2.82 3.81 1.79 46.57 20.75 21.99 22.83
PSG-M 0.999 1.24 2.07 2.7 3.52 6.81 24.60 18.84 18.52 16.48
IKH-EFT 0.965 1.1 1.9 2.5 3.2 3.52 15.00 11.58 12.00 8.13
PSO–SA 0.931 0.935 1.68 2.2 2.94

Average 22.89 51.17 35.52 37.97 35.24

Table 9  Average percentage optimization of energy for different number of tasks

Tasks 100 200 300 400 500 Percentage of optimization  Etot

FCFS 15 38 45 53.1 78.1 39.80 73.68 63.78 63.47 70.81
EDF 24.1 35.2 47.7 58 66.2 62.53 71.59 65.83 66.55 65.56
Gfe 7.91 12 14.9 23.8 27.9 − 14.16 16.67 − 9.40 18.49 18.28
Detour 9.38 15 21.1 28.1 29.1 3.73 33.33 22.75 30.96 21.65
PSG 9.71 10.8 17.8 23 26.7 7.00 7.41 8.43 15.65 14.61
PSG-M 9.37 10 16.6 21.7 24.9 3.63 0.00 1.81 10.60 8.43
IKH-EFT 9.25 10.1 16.4 20.2 23.8 2.38 0.99 0.61 3.96 4.20
PSO–SA 9.03 10 16.3 19.4 22.8

Average 14.99 29.10 21.97 29.95 29.08
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6  Conclusion

Fog computing has facilitated the relations between IoT and cloud centers and 
increased data transfer speed between the two parts. Another achievement is that 
it can process IoT requests if required. This study focused on task scheduling in the 
fog computing environment to reduce service delay time and energy consumption 
while observing task deadlines and priorities and maintaining workflow for IoT 
devices. We examined IoT task scheduling over a heterogeneous fog network. For 
this purpose, we first discussed the notions and problem formulation in the workflow 
mode, which had not been considered before at the same time as maintenance of 
deadline and priority. We presented an architecture to address these issues. Given 
the multi-objective nature of the problem, we used an algorithm based on PSO and 
SA to identify the most appropriate solution among the possible ones. The algorithm 
reduces energy consumption and task finish time in two steps. We compared the pro-
posed algorithm to the others in modes with varying numbers of fog nodes and tasks 
to evaluate its performance. The simulation results demonstrated that the proposed 
algorithm performs more successfully in all the evaluations. It avoids entrapment 
in local optima by generating neighboring solutions. Although the key idea in this 
paper was to optimize the system’s total energy consumption while observing task 
deadlines, workflow and priority were also considered in the algorithm, making it 
far more complex.
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