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It is difficult to analyze and anticipate the power output of Combined Cycle Power
Plants (CCPPs) when considering operational thermal variables such as ambient
pressure, vacuum, relative humidity, and temperature. Our data visualization study
shows strong non-linearity in the experimental data. We observe that CCPP
energy production increases linearly with temperature but not pressure. We
offer the Waterwheel Plant Algorithm (WWPA), a unique metaheuristic
optimization method, to fine-tune Recurrent Neural Network hyperparameters
to improve prediction accuracy. A robust mathematical model for energy
production prediction is built and validated using anticipated and experimental
data residuals. The residuals’ uniformity above and below the regression line
suggests acceptable prediction errors. Ourmathematical model has an R-squared
value of 0.935 and 0.999 during training and testing, demonstrating its
outstanding predictive accuracy. This research provides an accurate way to
forecast CCPP energy output, which could improve operational efficiency and
resource utilization in these power plants.
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1 Introduction

Electricity is the lifeblood of modern civilization and one of the
most important building blocks of human progress on every
continent. A massive quantity of electricity is needed to keep our
economy and society running smoothly. As a result of the increasing
need for electricity, combined cycle power plants (CCPP) are being
utilized in an increasing number of locations around the world
(Ganjehkaviri et al., 2015). The CCPP is a huge power plant that
combines gas turbines and steam turbines to produce electricity.
They make use of fossil fuels to attain the highest possible level of
technical efficiency in power generation, which has now been shown
to be greater than 0.60 (Kotowicz and Brzęczek, 2018). Atmospheric
pressure, relative humidity, exhaust pressure, and outside air
temperature are the four most important factors in a power
plant’s basic load functioning, all of which affect the amount of
electricity produced (Tüfekci, 2014). The system’s power output
could be affected by small adjustments to these variables.
Thermodynamic methods are typically utilized in thermal power
plants as a means of conducting precise system analyses in
preparation for the operation of the plant. This method relies on
a large number of numerical assumptions and parameters in order to
answer the thousands of non-linear equations that need to be solved.
The explanation of these equations either requires an excessive
amount of effort and time to compute, or it is sometimes
difficult to solve these equations without the use of these
numerical assumptions (Kesgin and Heperkan, 2005). In place of
thermodynamic methodologies and mathematical modeling,
machine learning (ML) techniques are being employed to
examine systems for unpredictable output and input (Shuvo
et al., 2021).

Some of the many ML models developed for the many existing
challenges have received more attention than others because of their
greater adaptability to non-linear simulations (Khafaga et al., 2022;
Alhussan et al., 2022). An ANNs model takes into account both
environmental factors and nonlinear interactions, with the
generated power serving as an output. One of these promising
approaches is artificial neural networks (ANNs). With the help of
an ANN model, we can determine the plant’s output power under
different scenarios.

Based on the information collected from the power plant and
using the ANN model described in Kesgin and Heperkan (2005),
various effects on the power plant, such as relative humidity,
ambient pressure, and ambient temperature, are analyzed. The
performance and operational characteristics of a gas turbine are
calculated using an ANN model (Fast et al., 2009), which takes into
account the changing local air conditions. Researchers evaluated and
contrasted a variety of ML approaches (Siddiqui et al., 2021) to
compute the full load output of electrical power generated by a
CCPP that was operating on base load. In the study presented by
Rahnama et al. (2012), an artificial neural network system is
developed and employed to model stationary gas turbines. The
ANN system proves to be effective in examining the behavior of
gas turbines across various operating conditions, ranging from full-
speed full load to no-load situations. Furthermore, in Refan et al.
(2012), researchers successfully utilize radial basis function (RBF)
and multi-layer perception (MLP) networks to identify the start-up
stage of a stationary gas turbine. Lorencin et al. (2019) estimated the

CCPP’s electrical power production and performance using MLP
models with varying solvers, hidden layer topologies, and activation
functions. The authors (Yari et al. 2013) compare the performance
of feed-forward neural networks (FFNNs) and dynamic linear
models for the identification of gas turbines. The study reveals
that neural networks, specifically FFNNs, outperform dynamic
linear models in terms of prognostication, showcasing superior
performance and accuracy. The authors conclude that neural
networks serve as a more effective model for predicting and
analyzing the behavior of gas turbines compared to traditional
linear models. ANN models have proven to be highly effective in
various applications related to gas turbine engines. In addition to the
mentioned uses, ANNs are successfully employed in isolation, fault
detection, anomaly detection, and performance analysis of gas
turbine engines, as highlighted in Tayarani-Bathaie et al. (2014).
This study demonstrated the versatility and reliability of ANN
models in addressing important aspects such as identifying faults,
detecting anomalies, and analyzing the performance of gas turbine
engines. Using FFNNs, which are entirely based on a novel trained
particle swarm optimization method, the authors (Elfaki and
Ahmed, 2018) anticipated the total electrical energy power
output of the CCPP. They calculated the hourly average power
output of the CCPP by using atmospheric pressure, relative
humidity, vacuum, and ambient temperature as input inputs. A
machine learning (ML) processing tool based on artificial neural
networks is employed with a predictive approach (Roni and Khan,
2017). The study focuses on CCPPs and utilizes the ANN-based ML
tool to investigate and analyze the environmental impact on CCPP
generation. By leveraging the predictive capabilities of ANNs, the
researchers can assess and understand how various environmental
factors affect the operation and performance of CCPPs. This
approach provides valuable insights into the environmental
implications of CCPP generation and can assist in developing
strategies for optimizing their environmental impact. Numerous
studies (Tso and Yau, 2007; Azadeh et al., 2010; Che et al., 2012;
Leung and Lee, 2013) have been conducted in the literature to
predict electrical energy consumption using machine learning
intelligence tools. However, there are relatively fewer studies that
specifically focus on calculating the overall electrical power of a
CCPP with a heating system consisting of one steam turbine and
three gas turbines. The authors (Xu and Yan, 2019) employ an
extreme learning machine (ELM) as the underlying regression
model to analyze the performance of the power plant under
varying environmental conditions. The ELM model is designed
to autonomously update regression models to adapt to sudden or
gradual changes in the environment. This approach allows for a
more robust analysis of the power plant’s performance in dynamic
atmospheric conditions. Furthermore, (Chatterjee et al., 2018),
utilize a Cuckoo Search-based ANN to predict the output
electrical energy of a gas turbine and combined steam
mechanisms. This integration of Cuckoo Search optimization
with ANN aims to enhance the reliability and accuracy of the
prediction models for these energy-generating systems. The
author (Heydari et al., 2020) predicts the price of electricity and
the demand for power of CCPP using a combination of a
gravitational search optimization algorithm and a compound
neural network. The author picks the input data by using feature
selection. The culmination of the simulations demonstrates the
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improved accuracy and consistency of the new model. Guo et al.
(2006) utilized support vector regression to make predictions
regarding the power output of combined cycle power plants and
proved its suitability for this purpose.

Based on the research cited above, it appears that artificial
intelligence has contributed novel understanding to the study of
characteristics related to combined cycle power plants, especially
with regard to power efficiency predictions. This method of

prediction, which is based on CCPP features, is important for the
long-term development of power plants. Accuracy is crucial in
complex engineering processes like these and improving it can
lead to significant benefits in terms of cost and time.

This paper is organized as follows; In Section 2, we describe the
CCPP system, which is the starting point for the work that will be done
to make predictions based on CCPP data. The materials and methods
proposed in this manuscript are discussed in Section 3. In section 4, we

FIGURE 1
Combined cycle power plant schematic diagram.

FIGURE 2
Scatter plot of the actual and predicted features.
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explain the proposed methodology. Our findings from mathematical
modeling, data visualization, RNN, and WWPA modeling are
presented in Section 5. Section 6 concludes with some final thoughts.

2 CCPP system

A combined cycle power plant is a type of electricity generator
that combines two distinct thermodynamic cycles. It’s made to make
the most efficient use of fuel by incorporating both gas and steam
turbines.

Steam turbines, heat recovery steam generators (HRSG), and gas
turbines are the main three components that make up a combined
cycle power plant as shown in Figure 1. The procedure starts with a
gas turbine, which is very much like a jet engine in its operation. The
turbine can be used to burn natural gas or another gaseous fuel,
which results in the generation of gas that is both extremely hot and
extremely pressurized. This causes the gas to expand, which in turn
powers the blades of the turbine, which are connected to a generator
to produce energy. The gas that is expelled from the gas turbine still
retains a sizeable portion of its original thermal energy. The gas
turbine’s high-temperature exhaust is piped to a heat-recovery
steam generator. The HRSG takes the gas turbine’s exhaust heat
and turns it into usable steam.Water running through tubes absorbs

heat from the exhaust gas, creating high-pressure steam. After being
created in the HRSG, the high-pressure steam is subsequently fed
into a steam turbine to be used as the driving force. When the steam
expands and moves through the blades of the steam turbine, it
transfers its kinetic energy to the turbine, which is then connected to
another generator to produce extra power (Ibrahim et al., 2017).

Combined cycle power plants offer several advantages:

• The utilization of both gas and steam cycles enables the
generation of electricity at a significantly better overall
efficiency. This, in turn, results in less consumption of fuel
and fewer emissions of greenhouse gases.

• Gas turbines have a rapid starting capability, which enables
them to provide rapid response times to changes in the energy
demand. Because of their adaptability, combined cycle power
plants are appropriate for the generation of both baseload and
peak-load electricity.

• The recovery of waste heat, which is accomplished with the
help of the HRSG, makes the plant more efficient and has less
negative impact on the environment.

• CHP Potential The capability of combined cycle power plants
to generate both usable heat and electricity makes them ideally
suited for cogeneration applications, which in turn improves
the efficiency with which energy is used overall.

FIGURE 3
A correlation matrix.
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3 Materials and methods

This section provides the research principles and approaches of
this study, concentrating primarily on the mathematical formulae
and models applied in the RNN and WPA algorithms. This was
done so that the introduction of improved algorithms in the
subsequent section would be easier.

3.1 Datasets

The data collection contains 9,568 points of information
that were gathered from a combined cycle power plant (UCI,
2014) during a period of 6 years (2006–2011), during which
time the plant was configured to operate at full load. The plant
consists of one 160 MW ABB steam turbine, two dual-pressure
heat recovery steam generators, and two 160 MW ABB 13E2 gas
turbines. It is considered to have a modest 480 MW producing
capacity.

The selection process for the dataset involved the following: In
the first stage, a feature relevance analysis was conducted to ascertain
the variables that are most likely to have an impact on the electrical
power output of a CCPP. To discover pairings of variables that had a
strong link, a correlation analysis was undertaken. The
implementation of this approach effectively mitigated the
potential problems associated with multicollinearity in our model
(El-Kenawy et al., 2022a). After selecting pertinent and uncorrelated
factors, we systematically created all conceivable combinations of
these variables, taking into account various input configurations that
may impact the power output of the CCPP system. To choose the
final subsets, we employed performance measurements obtained
from preliminary tests, including mean squared error and R-squared
values (Hassib et al., 2019). These metrics were utilized to identify
the combinations that resulted in the most optimal dataset which
contains 15 distinct combinations of five variables.

The following values are calculated using data collected from a
network of sensors spread across the plant; temperature (AT)
between 1.81°C and 37.11°C, pressure (AP) between 992.89 and
1033.30 millibars, relative humidity (RH) between 25.56% and
100.16%, An exhaust vacuum (V) between 25.36 and
81.56 millibars, hourly power (PE) output of 420.26–495.76 MW
Net. To get useful insights from data, preprocessing is an essential
step that uses various methods (El-kenawy et al., 2022b). Emptying
the dataset of missing or null values is a standard preparation
procedure. Null values can introduce bias into analysis and
produce erroneous results. Removing these variables can improve
the data quality and guarantee accurate insights (Abdelhamid et al.,
2022). Normalization, particularly the min-max normalization
approach, is a crucial preprocessing technique. Data is typically
scaled between 0 and 1 when using this method (Eid and Zaki, 2022).
When working with variables that have varied scales or units,
normalization is a must (Khafaga, 2022). To avoid any one
variable dominating the study due to its scale alone, we rescale
the data to bring them within a common range, allowing for direct
comparison. Figure 2 shows a scatter plot that proves the closeness
of the results of the actual and predicted features.

Figure 3 shows the correlation matrix which is a useful
statistical tool for analyzing the bond between the variables in
the dataset. It often forms a matrix and displays the pairwise
correlations between all variables (Hassan et al., 2022). The
correlation coefficients, which can range from −1 to +1, show
the relationships’ relative strength and direction (Takieldeen
et al., 2022). We may examine the data’s dependencies,
patterns, and potential predictors by using a correlation
matrix to see which variables are positively or negatively
correlated. This knowledge is useful for predictive modeling
since it aids in feature selection, dimensionality reduction, and
the detection of multicollinearity problems (El-kenawy et al.,
2022c). The selection of 15 distinct combinations of variables for
the following reasons:

FIGURE 4
Waterwheel Plant Image. (A) Lateral view on a free-floating shoot with numerous traps. (B) Frontal view with open and closed traps. (C) Single open
trap. (D) Schematic drawing of an open trap.
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a. Our objective was to guarantee that the chosen combinations
effectively encompass a diverse array of input circumstances that
the CCPP system may experience in practical applications. The
presence of variability inside our model contributes to its ability
to generalize effectively (El-kenawy et al., 2022d).

b. In order to encompass all pertinent variables identified in the
analysis of feature relevance, the 15 combinations were
deliberately chosen. This methodology enables the assessment
of the influence of individual variables on the generation of
power (Oubelaid et al., 2023).

c. The assessment of the robustness of our predictive model can be
achieved by conducting tests on various combinations. This aids
in the identification of variables that consistently exert influence
and those that may exhibit effects particular to certain contexts
(Towfek, 2023).

d. The inclusion of a collection of 15 unique combinations enables
us to conduct a comparative analysis of our model’s performance
across a diverse range of scenarios, facilitating the derivation of
more comprehensive and robust conclusions regarding its
efficacy (Towfek et, 2023).

3.2 Waterwheel plant algorithm (WWPA)

It is an innovative form of stochastic optimization that is inspired
by the workings of natural systems proposed by Abdelhamid (2022).
Modeling the natural behavior of the waterwheel plant when it is on a
hunt is the foundation of the fundamental idea behind theWWPA that
has been developed. The strategy that waterwheel plants employ to
identify their insect prey, trap it, and then relocate it to amore accessible
area before consuming it served as the primary source of inspiration for
the fundamental notion of WWPA (Alkattan H et al., 2023; Alhasani
et al., 2023). In the following section, we will discuss the ideas that led to
the creation of the algorithm, as well as the mathematical model for its
technique.

3.2.1 Inspiration of the WWPA
The Waterwheel plant, also known as Aldrovanda vesiculosa,

possesses small transparent flytrap-like structures on its broad
petiole. These traps, measuring approximately 1/12 inch, are
safeguarded from harm or accidental activation by surrounding
bristle-like hairs. Similar to the teeth of a flytrap, the trap’s outer
edges are covered in hook-shaped teeth that interlock when the trap
closes around its prey. Inside the trap, around forty elongated trigger
hairs, comparable to the trigger hairs found in Venus’s flytraps, are
responsible for triggering the closure of the trap. Predators also
possess acid-secreting glands to aid in digestion. Once ensnared, the
unfortunate victim is sealed by the trap’s interlocking teeth and a
mucus sealant, effectively trapping it and guiding it toward the base
of the trap near the hinge. The majority of the prey’s nutrients are
absorbed as the trap digests the remaining water. Each Aldrovanda
trap can capture and consume two to four meals before becoming
inactive, much like a flytrap. Figure 4 depicts an image of the
waterwheel plant.

3.2.2 Mathematical model of WWPA
The WWPA is a population-based method that uses iteration to

find an appropriate solution based on its population members’

search capacity in the universe of possible solutions. The WWPA
population waterwheels have problem variable values based on their
search space position. Thus, each waterwheel represents a vector-
based solution. A matrix Eq. 1 represents the WWPA population of
waterwheels. WWPA initializes waterwheel positions in the search
space randomly using Eq. 2.

P �
p1, 1 p1, 2 . . . p1, j . . . p1, m
p2, 1 p2, 2 . . . p2, j . . . p2, m
pi, 1 pi, 2 . . . pi, j . . . pi,m
pN, 1 pN, 2 . . .pN, j . . . pN,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

pi,j � lbj + ri,j ubj − lbj( ), i � 1: N, j � 1: m (2)

In this context, N represents the number of waterwheels, while
m indicates the number of variables. The value ri,j correspond to
random number ranging between 0 and 1. lbj and ubj represent the
lower and upper boundaries, respectively, of the j-th variable in the
problem. P refers to the population matrix that contains the
locations of the waterwheels. Each row Pi in the matrix
represents a candidate solution, and pi,j denotes the value of the
j-th variable for the i-th waterwheel.

Every waterwheel is considered as a possible solution to the
problem, and thus, the objective function can be evaluated for each
one of them. Previous research has demonstrated that a vector can
be employed to efficiently represent the values that form the
objective function of the problem.

F �

F1

.

.
Fi

.
FN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

F X1( )
. . . .
F Xi( )
. . . .

F XN( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

F is a vector containing all objective function values, and Fi is the
estimated value for the i-th waterwheel. Best solutions are
determined via objective function evaluations. Thus, the highest
value of the objective function refers to the best candidate solution,
while the lowest value relates to the worst member. The best answer
changes with each iteration because the waterwheels move over the
search space at varying rates.

3.2.2.1 Exploration
Waterwheels possess a strong predatory instinct thanks to their

highly developed sense of smell, enabling them to effectively track
and locate pests. When an insect enters the waterwheel’s vicinity, it
initiates an attack and pursues the target by accurately identifying its
position. The WWPA (Waterwheel Predator Algorithm) employs a
simulation of this hunting behavior to model the initial phase of its
population updating process. By incorporating the waterwheel’s
attack on the insect, the WWPA enhances its ability to explore
the optimal region and avoid getting trapped in local optima.
Consequently, significant positional shifts occur within the search
space as a result of this modeling. To determine the new location of
the waterwheel, an equation is employed in conjunction with the
simulation of the waterwheel’s approach toward the insect. If
relocating the waterwheel to this new position leads to an
increase in the value of the goal function, the previous location is
abandoned in favor of the newly described one.

�W � r1
→ �P t( ) + 2K( ) (4)
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�Pt+1 � �P t( ) + �W 2K + r2
→( ) (5)

If the solution fails to improve for three consecutive iterations, the
position of the waterwheel can be altered using the following equation.

�Pt+1 � Gaussian μP, σ( ) + r1
→ �P t( ) + 2K

�W
(6)

In this context, the variables r1
→ and r2

→ represent random
variables with values ranging from 0 to 2 and 0 to 1, respectively.
Furthermore, K is an exponential variable with values between 0 and
1. The vector �W denotes the diameter of the circle within which the
waterwheel plant will explore for potential promising areas.

3.2.2.2 Exploitation
The second step of population update in WWPA mimics the

behavior of waterwheels capturing and transporting insects to a
feeding tube. This simulated behavior is utilized to enhance the
exploitation capability of WWPA during local search, enabling the
algorithm to converge towards better solutions that are close to
previously discovered ones. By modeling the process of transporting
the insect to the appropriate tube, slight changes are introduced to the
waterwheel’s position within the search space. For each waterwheel in
the population, WWPA’s designers initially determine a new random
location referred to as a “good position for consuming insects,”
emulating the natural activity of waterwheels. Subsequently, if the
goal function value is higher at this new location, the waterwheel is
moved to this new position, replacing the previous location, as described
by the following equations.

�W � r3
→
p KPbest

���→
t( ) + r3 �P t( )( ) (7)

�P t + 1( ) � �P t( ) + K �W (8)
In this scenario, r3

→ represents a random variable with values
ranging from 0 to 2. �P(t) represents the current solution at iteration
t, while Pbest

���→
represents the best solution obtained so far. Similar to

the exploration phase mentioned earlier, if the solution fails to
improve for three consecutive iterations, the following mutation is
applied to ensure avoidance of local minima.

�P t + 1( ) � r1
→+K( ) sin

FC

θ
( ) (9)

where F and C are independent random variables with values
between (−5, 5). Furthermore, the following equation can be used
to demonstrate the exponential decay of K:

K � 1 + 2t2

Tmax
3 + F( ) (10)

The WWPA is offered as a procedure that can be repeated.
Adjusting the positions of all waterwheels is the final step in
implementing WWPA after the first two stages have been
carried out.

After comparing target function values, the optimal solution
candidate is improved. For the next iteration, the waterwheels’
positions are adjusted, and so on, until the algorithm reaches its
ultimate iteration. The steps necessary to implement WWPA are
laid down in pseudocode form in Algorithm 1. After a sufficient
number of iterations, WWPA presents the best possible candidate
answer it has been storing.

1: Initialize the positions Pi (i = 1, 2, . . ., n) for n

waterwheel plants and other parameters; objective

function fn, maximum iterations Tmax, r, r1
�→

, r2
�→

, r3
�→

,

f, c, and K.

2: Calculate the fitness of fn for each position Pi.

3: Find the best plant position Pbest.

4: Set t = 1.

5: while t ≤ Tmax do

6: for (i = 1: i<n+1) do

7: if (r < 0.5) then

8: Explore the search space of waterwheel plants

using:
�W � r1

�→( �P(t) + 2K)
Pt+1
����→ � �P(t) + �W (2K + r2

�→)
9: if the solution does not change for three

iterations, then

Pt+1
����→ � Gaussian(μP, σ) + r1

�→
�P(t) + 2K �W

10: end if

11: else

12: Exploit the current solutions to obtain the best

solution using:
�W � r3

�→
* (K Pbest

�����→(t) + r3
�P(t))

�P(t + 1) � �P(t) + K �W

13: if the solution does not change for three

iterations, then
�P(t + 1) � (r1

�→+ K) sin(FCθ )
14: end if

15: end if

16: end for

17: Decrease the value of K exponentially using:

K � (1 + 2t2

T max
3 + F)

18: Update r, r1
�→

, r2
�→

, r3
�→

, f, c.

19: Calculate the objective function fn for each

position pi

20: Find the best position pbest.

21: Set t = t + 1.

22: end while

23: Return the best solution pbest.

Algorithm 1. The proposed WWPA algorithm.

4 Proposed methodology

Tuning parameters in recurrent neural networks can benefit
significantly fromWWPA. To get the most out of an RNN andmake
the most accurate predictions possible, tuning its parameters is
essential. To useWWPA for adjusting parameters in RNNs, wemust
first determine which parameters should be optimized. Some
examples of hyperparameters that can be changed to modify the
network’s behavior are the learning rate, the number of hidden units,
the batch size, and the like. WWPA uses the fact that the most robust
Waterwheel Plant typically finds the best spot in nature. The
technique begins by creating a pool of solutions for different
parameter settings. Each key, or Waterwheel Plant, is given a
fitness value based on how well it performs on a validation set.

Waterwheel Plants are moved throughout the search space to find
optimal solutions. WWPA employs weighted vectors to direct
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Waterwheel Plants to suitable areas. The Waterwheel Plants’ fitness
ratings are used to calculate these vectors. The algorithm constantly
adjusts the Waterwheel Plants’ locations to reflect the greatest possible
outcome. WWPA attempts to converge on the best possible RNN
parameter configuration by iteratively refining the solutions. The
algorithm terminates after a fixed number of iterations or upon
reaching a convergence threshold (Abdelhamid et al., 2023b), at
which point the optimal solution is chosen; in this case, the
parameter configuration with the highest fitness value.

4.1 Recurrent neural networks (RNNs)

Recurrent Neural Networks (RNNs) are a subcategory of artificial
neural networks that were developed to process sequential input
through the use of feedback connections. In contrast to feedforward
neural networks, which process data in only one way from input to
output, RNNs can keep internal memory, which enables them to
remember information about prior inputs even as they process new
ones. In the 1980s, RNNs were developed. However, its widespread
implementation occurred until recently (Salehinejad et al., 2018).
Increases in computer power, especially the efficiency of parallel
processing units on graphics cards, have been a driving factor in
RNNs’ development. Time series forecasting (including electrical
load forecasting, weather forecasting, stock market forecasting, etc.)
is just one of the many modern applications for recurrent neural
networks. Since RNNs are dynamic systems, their internal state
changes at each classification time step. This occurs because neurons
in different layers can communicate with one another via self-feedback
and recurrent connections. Data from previous occurrences can be fed
into the RNN’s current processing steps via these feedback connections.
Thus, RNNs learn to remember past occurrences in a time series. In

sequential data, RNNs may detect temporal dependencies and context.
An RNN’s neuron takes input from both the current time step and its
previous state, forming a loop that preserves information. The network
may handle arbitrary sequential data with this recurrent connection.

Figure 5 illustrates the arrangement and relationships within a
basic recurrent neural network during both forward and backward
propagation. Xi represents the input at time step i, si denotes the
state of the recurrent cell at time step i, and yi

→ signifies the output of
the cell at time step i during forward propagation.When considering
the forward propagation process, at each time, the state’s value is
determined both by its history and the current input (Eskandari
et al., 2021).

si � g wax Xi + waasi−1( ) (11)
Where, si represents the output or state of the recurrent neural

network at a specific time step i, g denotes an activation function that
is applied to the weighted sum of inputs. wax refers to the weight or
coefficient associated with the input variable Xi, and si−1 represents
the previous state or output of the RNN at the previous time step (i-1).

In order to determine the output at time step i, we use the softmax
activation function. In order to generate a probability distribution over
numerous classes, the softmax function is frequently employed inmachine
learning and deep learning. It takes a vector as input, multiplies each
element by an exponent, and thendivides the resulting values by the sumof
the exponents to achieve normalization. By using this normalization, we
can guarantee that the resulting values are all interpretable probabilities and
fall inside the range (0, 1).

yi
→� softmax wya si( ) (12)

softmax x( )i � exi∑ke
xk

(13)

FIGURE 5
RNN forward and backward propagation. (A) Forward propagation (B) Backward propagation.
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Where, i = 1,2, , k, wya represents the output weight matrix.
The vanishing gradient problem is an obstacle in RNN training

because it makes it harder to capture long-term dependencies since
gradients decrease exponentially when they are backpropagated in
time (Yu et al., 2019). The authors propose using Long Short-Term
Memory (LSTM) networks, which have gating mechanisms to
regulate the gradient and information flows, to solve this
problem. The steps necessary to implement RNN are laid down
in pseudocode form in Algorithm 2.

A. Initialize Parameters:

1. Initialize the weights and biases of the RNN layers

randomly or using a specific initialization

technique.

2. Set the learning rate, the number of epochs, and other

hyperparameters.

3. Define the Activation Function

4. Choose an activation function suitable for the

problem, such as the hyperbolic tangent (tanh) or

sigmoid function.

B. Forward Pass

5. Compute the hidden state at the current time step by

applying the activation function to the linear

combination of the input and previous hidden state.

6. Compute the output of the RNN by applying a linear

transformation (dot product) to the hidden state.

7. Store the hidden state and output for each time step.

C. Compute Loss

8. Compare the predicted outputs of the RNN with the

ground truth targets using a suitable loss function,

such as mean squared error (MSE) or cross-entropy loss.

D. Backward Pass (Backpropagation Through Time)

9. Initialize the gradients of the parameters with zeros.

10. Compute the gradient of the output layer concerning

the loss.

11. Backpropagate the gradient through the RNN layer to

obtain the gradient of the hidden state.

12. Update the gradients of the parameters using the

computed gradients and the input at the current

time step.

13. Accumulate the gradients of the hidden state from the

previous time step.

E. Update Parameters

14. Update the weights and biases of the RNN using the WWPA

optimization algorithm.

15. Adjust the parameters based on the computed gradients

and the learning rate.

F. Repeat

16. Repeat steps B to E for the specified number of epochs or

until convergence.

G. Prediction

17. After training, the RNN can be used for prediction by

feeding new input sequences and propagating them

through the trained network.

18. Apply the forward pass steps described in step B to

compute the predicted outputs.

Algorithm 2. The proposed RNN algorithm.

5 Simulation results

Extensive testing is carried out in order to provide evidence of
the efficacy and superiority of the proposed WWPA algorithm. In
the trials, Windows 10 and Python 3.9 are utilized, both of which are

TABLE 2 Prediction evaluation criteria (Abdelhamid et al., 2023a).

Metric Formula

RMSE
���������������
1
N∑N

n�1 (V̂n − Vn)2
√

RRMSE RMSE∑N

n�1 V̂n

× 100

MAE 1
N∑N

n�1 |V̂n − Vn|

MBE 1
N∑N

n�1 (V̂n − Vn)

NSE
1 − ∑N

n�1 (Vn−V̂n )2∑N

n�1 (Vn−V̂n )2

WI
1 − ∑N

n�1 |V̂n−Vn |∑N

n�1 |Vn− �Vn |+|V̂n−V̂n |

R2

1 − ∑N

n�1 (Vn−V̂n)2∑N

n�1 (∑N

n�1 Vn)−Vn)2

r ∑N

n�1 (V̂n−V̂n )(Vn− �Vn)����������������������
(∑N

n�1 (V̂n−V̂n )2 )(∑N

n�1 (Vn− �Vn )2)
√

TABLE 1 Configuration parameters of the WWPA and competing optimization
algorithms.

Algorithm Parameter Values

WWPA

r1 (0, 2)

r2 (0, 1)

r3 (0, 2)

K (exponential variable) (0, 1)

F (−5, 5)

C (−5, 5)

K Decreases Exponentially

GA

Cross over 0.9

Mutation ratio 0.1

Selection mechanism Roulette wheel

Iterations 80

Agents 10

PSO

Acceleration constants (2, 2)

Inertia Wmax, Wmin (0.6, 0.9)

Particles 10

Iterations 80

GWO

a 2 to 0

Iterations 80

Wolves 10
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run at 3.00 GHz on an Intel(R) Core (TM) i5 processor.
(Manufacturer: Intel Corporation, located in California,
United States). Experiments were carried out in the context of a
case study, and the findings involved a comparison of the output of
the RNN-WWPA approach to that of baseline models’ output on a
dataset consisting of information about power output prediction
from CCPP. The configuration settings of both the WWPA and
other optimization approaches are displayed in Table 1.

In this section, we will conduct an analysis and evaluation of the
strategy that has been suggested for CCPP output prediction. The
evaluation is carried out with the help of the proposed algorithm for
feature selection and the proposed model that is WWPA-based
optimized. The results that were recorded will be presented together
with a description according to three stages.

5.1 Performance metrics

Additional measures are employed to evaluate the performance
of regression models used for predicting output power in a
combined cycle power plant. These metrics include root mean
squared error (RMSE), mean absolute error (MAE), mean bias
error (MBE), Pearson’s correlation coefficient (r), coefficient of
determination (R2), relative root mean squared error (RRMSE),
Nash Sutcliffe Efficiency (NSE), and agreement determination
(WI). Here, “N” represents the total number of observations in
the dataset, (V̂n) and (Vn) denote the estimated and observed values
for the nth bandwidth, while (V̂n) and (Vn) represent the arithmetic
means of the estimated and observed values, respectively. Table 2
provides an overview of the criteria used for evaluating predictions.

Table 3 presents a comparison between the various models’
respective performance metrics. According to the findings, the
proposed WWPA-RNN model gave the best root mean squared
error with 0.13%, so the proposed model has a lower level of error
or discrepancy between its predictions and the actual data points.
The proposed WWPA-RNN model’s predictions have a low
relative error of 61.23% compared to the range or variability of
the target variable. It indicates that the model’s predictions are
relatively accurate and have a lower level of discrepancy compared
to the spread of the data. The squared error for the proposed model
is close to 1 so, the independent variables in the model have a

strong relationship with the dependent variable and are effective in
explaining the variability in the data. The proposed model proves
its efficiency and accuracy as the NSE value near 1 indicates that
the model captures the underlying processes or relationships
accurately and performs exceptionally well in reproducing the
observed data.

5.2 Statistical analysis

The previous stage results provide further evidence of the
viability of the strategy that was recommended. In addition, the
results of the predictions are subjected to statistical examination, the
findings of which are shown in Table 4. The outcomes of the
statistical analysis are compared with those of the other seven
optimization algorithms in the following table. The findings of
the research and the comparison demonstrate that the proposed
model is preferable.

Several tests were conducted to evaluate the statistical
significance of the optimized stacked ensemble. The statistical

TABLE 3 Comparison of the performance metrics for different models.

KNN RNN WWPA-RNN PSO-RNN GWO-RNN GA-RNN

RMSE 0.04204782 0.013077255 0.001306203 0.004425537 0.005681802 0.008704812

MAE 0.029059236 0.00901003 0.001166398 0.002710157 0.003431686 0.00574941

MBE 0.000177799 −0.001036424 0.000459383 0.000100576 −2.84E-05 4.01E-05

r 0.984487437 0.998458149 0.999994714 0.999774145 0.999625705 0.997622788

R2 0.969215513 0.996918675 0.999889471 0.999548342 0.999251549 0.996245719

RRMSE 12.28714908 3.513049755 0.612325626 0.817373032 1.049398482 2.053648175

NSE 0.969214331 0.9968905312 0.9998976175 0.999545684 0.999251145 0.998724506

WI 0.932094021 0.9784670471 0.9978630914 0.992521015 0.990529874 0.986530786

TABLE 4 Statistical analysis of the prediction results achieved by the proposed
WWPA-RNN model.

WWPA-
RNN

PSO-
RNN

GWO-
RNN

GA-
RNN

Number of values 10 10 10 10

Minimum 0.001303 0.003425 0.004681 0.006171

Maximum 0.001316 0.005425 0.006681 0.009705

Range 0.000013 0.002 0.002 0.003535

Mean 0.001307 0.004425 0.005681 0.008398

Std. Deviation 0.000003401 0.0006667 0.0004714 0.00109

Std. Error of
Mean

0.000001075 0.0002108 0.0001491 0.0003448

Harmonic mean 0.001307 0.004332 0.005645 0.008247

Skewness 2.651 0 0 −1.397

Kurtosis 8.173 0.08036 4.5 1.247
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TABLE 5 ANOVA test applied to the prediction results achieved by the proposed WWPA-RNN model.

SS DF MS F (DFn, DFd) p-value

Treatment (between columns) 0.00026 3 8.66E-05 F (3, 36) = 186.6 p < 0.0001

Residual (within columns) 1.67E-05 36 4.64E-07

Total 0.000276 39

TABLE 6 Wilcoxon test applied the prediction results achieved by the proposed WWPA-RNN model.

WWPA-RNN PSO-RNN GWO-RNN GA-RNN

Theoretical median 0 0 0 0

Actual median 0.001306 0.004425 0.005681 0.008705

Number of values 10 10 10 10

Sum of signed ranks (W) 55 55 55 55

Sum of positive ranks 55 55 55 55

Sum of negative ranks 0 0 0 0

p-value (two tailed) 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact

p-value summary ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes

Discrepancy 0.001306 0.004425 0.005681 0.008705

FIGURE 6
Visualizing the results of CCPP predicted output power.
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procedures included both the Wilcoxon signed-rank test and the
ANOVA test. The results of these tests can be found in Tables 5, 6.
Table 5 shows that the p-value for the proposed method is less
than 0.0001, indicating a statistical difference between the
proposed method and the other techniques tested.
Furthermore, the p-value for the proposed method is lower
than the p-value for the other methods used in the
experiments. Similarly, Table 6 also confirms the statistical
difference and significance of the suggested approach, with the
recorded p-value supporting its significance.

In order to enhance the performance and interpretability of
machine learning models, a significant emphasis is placed on
quantitative evaluation, data-driven decision-making,
dimensionality reduction, and model interpretation. These
aspects, facilitated by statistical techniques, are crucial for
selecting relevant features and improving model performance.
To examine the effectiveness of the two feature selection
methods, we employ a one-way analysis of variance (ANOVA)
test to determine if there exists a statistically significant
difference between them.

Feature selection often employs analysis of variance (ANOVA)
as a widely used technique. Its primary purpose is to assess the
statistical significance of multiple features concerning the target
variable. By analyzing the mean values of the target variable across
different levels or categories of a feature, ANOVA helps uncover
the relationship between each feature and the objective variable.

The calculation involves an F-statistic, which measures the ratio of
variance between group means to the variance within groups. A
higher F-statistic indicates greater differences between the means
of the compared groups, suggesting that the feature being
evaluated may hold greater importance in predicting the target
variable.

Visual analysis of the generated power from the CCPP is
conducted using the plots displayed in Figure 6. These plots,
including residual, homoscedasticity, quartile-quartile (QQ),
and heatmap, provide insight into the performance of the
proposed method in predicting power output. The plots
demonstrate that the proposed method shows promising results
in predicting the generated power. Specifically, the residual and
homoscedasticity plots indicate minimal prediction errors when
estimating power output from the combined cycle power plant.
Additionally, the QQ and heatmap plots suggest robust prediction
capabilities.

Figures 7, 8 show the accuracy values obtained by the
suggested technique in comparison to the other three
methods and the histogram, respectively. Figure 7 shows the
accuracy values provided by the suggested methodology. This
comparison was carried out so that the resilience of the
suggested optimized model could be illustrated in a way that
was simple enough to be comprehended by everyone. The fact
that the method that was presented was able to achieve the
greatest possible accuracy value is evidence that the method is
both reliable and resilient.

Finally, the significance and implications of accurate electrical
power output prediction for combined cycle power plants may be
discussed as follows.

By making real-time adjustments to factors like fuel
consumption, turbine speed, and inlet air conditions based on
accurate predictions of electrical power generation, CCPPs may
maximize their efficiency. As a result of this optimization, energy
production efficiency is improved, with fewer resources being
squandered, and more electricity being produced. CCPPs can
optimize fuel consumption through accurate power output
forecasts. As a result, both fuel use and operational costs have
decreased. Predictive models can be used to anticipate when
equipment may break or its performance may degrade, allowing
for preventative maintenance that lessens disruptions and saves
money.

FIGURE 7
Visualizing accuracy comparison values of the proposed WWPA-
RNN optimization algorithm and other competitive ones.

FIGURE 8
Histogram of the accuracy values for the proposed WWPA-RNN optimization algorithm and other competitive ones.
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Emissions of greenhouse gases and other pollutants can be
decreased if energy production is optimized as a consequence of
accurate power output forecast. This is consistent with
environmental sustainability objectives and regulatory mandates.
Better integration of CCPPs into the electricity grid is possible with
more precise projections. Electricity supply can be better planned
and managed by grid operators, leading to greater system stability
and reliability.

The results of this study have implications for CCPPs’ long-term
strategy as well as their day-to-day operations. Owners and
operators of power plants can utilize the information to make
informed decisions about capital enhancements and new
initiatives. Data-driven operations allow CCPPs to utilize
predictive models for continual process optimization. More
flexible and responsive power plants may be the result of this
transition. The study’s findings provide CCPP operators with
immediate, actionable insights into power output.

6 Conclusion

In order to anticipate the electrical power output of a CCPP
running at base load, this study provided an alternate solution model.
Machine learning methods were selected for accurate prediction in
place of thermodynamic methods, which rely on assumptions and
have intractably many nonlinear equations of a real-world application
of a system. Thermodynamic approaches to system analysis are
computationally intensive and may produce incorrect results due
to the substantial number of assumptions made and the complexity of
the resulting non-linear equations. To get around this problem,
several machine-learning regression approaches were given for
forecasting the output of a thermodynamic system—specifically, a
combined-cycle power plant with two gas turbines, one steam turbine,
and two heating systems. Finding out which type of machine learning
regression was the most accurate in predicting full-load electrical
power output is the primary objective of this research. All of the
available subsets of the dataset, which contain 15 distinct
combinations of five variables AT, V, AP, PE, and RH, were
subjected to a total of two distinct machine-learning regression
methods and four hybrid algorithms. The WWPA-RNN approach
was determined to be the most successful approach, which might
forecast the full load electrical power output of a base load operated
CCPP with the maximum prediction accuracy, according to the
average findings of the comparative trials. The CCPP from which

the data was taken can rely on the proposed method to predict the
different variables through which the amount of energy produced
from this plant can be calculated.
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