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PEMILIHAN FITUR DAN ALGORITMA KRILL HERD LANJUTAN UNTUK

PENGKLUSTERAN DOKUMEN TEKS

ABSTRAK

Pengklusteran dokumen teks adalah satu tren baru dalam galian teks di mana dokumen-
dokumen diasingkan kepada beberapa kluster yang koheren, di mana dokumen-dokumen
dalam kluster yang sama adalah serupa. Dalam kajian ini, satu kaedah baru untuk me-
nyelesaikan masalah pengklusteran dokumen teks dijalankan dalam dua peringkat: (i)
Satu kaedah pemilihan fitur menggunakan algoritma optima kumpulan partikel dengan
satu skima pemberat yang baru dan satu teknik pengurangan dimensi yang lengkap di-
cadangkan untuk mendapatkan satu subset baru fitur-fitur yang lebih bermaklumat de-
ngan ruang berdimensi rendah. Subset baru ini digunakan untuk memperbaiki prestasi
algoritma pengklusteran teks dalam peringkat berikutnya dan ini mengurangan masa
pengiraannya. Algoritma pengklusteran min-k digunakan untuk menilai keberkesanan
subset-subset yang diperolehi. (i) Empat algoritma krill herd iaitu (a) algoritma krill
herd asas, (b) algoritma krill herd yang telah diubahsuai, (c) algoritma krill herd hibrid,
dan (d) algoritma hibrid pelbagai objektif krill herd, disarankan untuk menyelesaik-
an masalah pengklusteran teks; algoritma ini adalah penambahbaikan lanjutan kepada
versi-versi yang terdahulu. Untuk proses penilaian, tujuh set data teks penanda aras
digunakan dengan pencirian dan kesukaran yang berbeza. Keputusan menunjukkan
bahawa kaedah yang dicadangkan dan algoritma yang diperolehi mencapai keputusan

terbaik berbanding dengan kaedah-kaedah lain yang diutarakan dalam literatur.
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FEATURE SELECTION AND ENHANCED KRILL HERD ALGORITHM

FOR TEXT DOCUMENT CLUSTERING

ABSTRACT

Text document (TD) clustering is a new trend in text mining in which the TDs
are separated into several coherent clusters, where documents in the same cluster are
similar. In this study, a new method for solving the TD clustering problem worked
in the following two stages: (i) A new feature selection method using particle swarm
optimization algorithm with a novel weighting scheme and a detailed dimension re-
duction technique are proposed to obtain a new subset of more informative features
with low-dimensional space. This new subset is used to improve the performance of
the text clustering (TC) algorithm in the subsequent stage and reduce its computation
time. The k-mean clustering algorithm is used to evaluate the effectiveness of the ob-
tained subsets. (ii) Four krill herd algorithms (KHAs), namely, (a) basic KHA, (b)
modified KHA, (c) hybrid KHA, and (d) multi-objective hybrid KHA, are proposed to
solve the TC problem; these algorithms are incremental improvements of the preceding
versions. For the evaluation process, seven benchmark text datasets are used with dif-
ferent characterizations and complexities. Results show that the proposed methods and
algorithms obtained the best results in comparison with the other comparative methods

published in the literature.

XX1



CHAPTER 1

INTRODUCTION

1.1 Background

With the growth of the amount of text information on Internet web pages and mod-
ern applications, in general, interest in the text analysis area has increased to facili-
tate the processing of a large amount of unorganized text information (Sadeghian &

Nezamabadi-pour, [2015).

Text clustering (TC) is an efficient unsupervised learning technique used to deal
with numerous text documents (TDs) without any foreknowledge of the class label of
the document (Prakash, Hanumanthappa, & Mamatha,|[2014)). This technique partitions
a set of large TDs into meaningful and coherent clusters by collating relevant (similar)
documents in the same cluster based on its intrinsic characteristics (Cobos et al., [2014).
The same clusters (groups) contain relevant and similar TDs. Meanwhile, different
clusters contain irrelevant and dissimilar TDs (L. M. Abualigah, Khader, & Al-Betar,

2016a).

In the modern era, clustering is an important activity because of the size of text
information on Internet web pages (Oikonomakou & Vazirgiannis, 2010). Clustering is
used to determine relevant TDs and facilitate TD display by groups that share the same
pattern and contents (Cobos et al., 2014). The TC technique is successfully utilized
in many research areas to facilitate the text analysis process, such as data mining,

digital forensics analysis, and information retrieval (Forsati, Mahdavi, Shamsfard, &



Meybodi, [2013)).

Vector space model (VSM) is the most common model used in TC to represent
each document; in this model, each term in the TDs is a feature (word) for document
representation (Salton, Wong, & Yang, 1975} Yuan, Ouyang, & Xiong, [2013). The
TDs are represented by a multi-dimensional space, in which the position value of each
dimension corresponds to a term frequency (TF) value. The text features generated
from different text terms, even in a small document, would be represented by hundreds
and/or thousands of text features. Thus, TDs will have high-dimensional informative
and uninformative features (i.e., irrelevant, redundant, unevenly distributed, and noisy
features). These uninformative features can be eliminated using the feature selection

(FS) technique (Bharti & Singh, 2016b; L. Zheng, D1ao, & Shen, 2015)).

FS techniques are nondeterministic polynomial time-hard optimization methods
used to determine the optimal subset of informative text features and improve the per-
formance of the TC method while maintaining the necessary text information (Bharti
& Singh, [2016b; K.-C. Lin, Zhang, Huang, Hung, & Yen, 2016). Typically, these
techniques are performed even without any foreknowledge of the class label of the
document. Conventionally, these techniques are divided into three main types, namely,
FS based on document frequency (DF), FS based on TF, and hybrid feature technique
based on DF and TF (Y. Wang, Liu, Feng, & Zhu, 2015). Several text-based stud-
ies rely on FS methods, such as TC (L. M. Abualigah, Khader, & Al-Betar, 2016b),
text classification (Z. Zheng, Wu, & Srihari, |2004), and data mining (K.-C. Lin et al.,
2016). Recently, metaheuristic algorithms have been successfully used in the area of

text mining to solve the text document clustering problems (TDCPs) and text feature



selection problems (TFSPs) (BoussaiD, Lepagnot, & Siarry, 2013)).

The application of FS techniques produces a new subset with numerous informa-
tive text features. However, the dimensionality is still high because all dimensions
remain even after removing the uninformative features. The dimensional space of this
subset must be reduced further to facilitate the TC process (Lu, Liang, Ye, & Cao),
2015). High-dimensional feature space has become a significant challenge to the TC
domain because it increases the computational time while decreases the efficiency of
TC techniques (van der MLJP & van den HH, 2009). Thus, a dimension reduction
(DR) technique is necessary to produce a new low-dimensional subset of useful fea-
tures (Diao, 2014} Esmin, Coelho, & Matwin, 2015; Sorzano, Vargas, & Montano,
2014a)). This technique will reduce the computation time and improve the perfor-
mance of the TC algorithm. The DR technique should eliminate useless text features;
eliminate unnecessary, redundant, and noisy text features; preserve intrinsic informa-
tion; and significantly reduce the dimension of the text feature space (Bharti & Singh,

2014b; Raymer, Punch, Goodman, Kuhn, & Jain, 2000).

1.2 Motivation and Problem Statement

Recently, unorganized TDs on Internet web pages and modern applications have in-
creased exponentially, and the number of Internet users in the world has exceeded
three billiorﬂ These users face difficulties in obtaining the information that they need
easily and neatly (Bharti & Singh, [2014b};|[Uguz, 2011)). The process of managing such
a large TD is called TD clustering technique, which transforms a set of large unor-

ganized TDs into coherent and similar groups, that is, clusters, which facilitate user

1 https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users



browsing and searching for information. From the literature on TC techniques, four

main problems are identified and explained as follows:

First, TDs usually contain informative and uninformative text features. Uninforma-
tive features can confuse and mislead the TD clustering algorithm, thereby reducing the
performance of the clustering algorithm (Bharti & Singh, 2014b, 2015b)). Therefore,
identifying and removing these uninformative text features can improve the perfor-
mance of the clustering algorithm and reduce the computation time. The main draw-
back of these methods is focusing only on selecting a new subset of text features that
rely on the existing weighting scheme (score) (Bhartt & Singh, 2016b). The current
weighting scheme has certain weaknesses in evaluating the features by computing the
weight score for all features equally using one main factor (i.e., term frequency). Thus,
the distinction between informative and uninformative text features over the document
is insufficient (Ahmad, Abu Bakar, & Yaakub), 2015; Bharti & Singh, [2016b}; (Cobos,
Leon, & Mendoza, 2010a; Moayedikia, Jensen, Wiil, & Forsati, 2015). The weighted
score should be more accurate to facilitate the process of the text FS technique, where
it plays the main role in the FS procedure by distinguishing between TD features by

providing a high score to the more informative features.

Second, the high-dimensional feature space is one of the most critical weaknesses
of TDs because it influences the process of TD clustering techniques by increasing
the execution time and decreasing the performance of the TD clustering algorithm
(Bharti & Singhl 2014b; Nebu & Joseph, 2016). The high-dimensional feature space
contains the necessary (useful) and unnecessary (useless) text features. Thus, the DR

technique reduces the dimensional feature space by pruning useless text features to



improve the performance of the clustering algorithm. One of the possible ways to
solve the high-dimensional feature space is the DF method. This method deals with
the reduction process with fixed roles (DF of the feature) in making the decision to
prune useless text features (Esmin et al.l 2015; Tang, Shepherd, Milios, & Heywood,
2005; |Yao, Coquery, & Lé Cao, 2012a). The fundamental premise of the DF method
is impractical because the frequently occurring features are considered more important

in the documents than the infrequently occurring features (Bharti & Singh, 2015b)).

Third, the main advantage of the TC algorithm is its effectiveness in guarantee-
ing access to the accurate clusters. Over the past few years, a large proportion of
researchers in the TC domain applied metaheuristic algorithms to solve the TDCPs.
However, a major drawback of these algorithms is that it provides a good exploration
of the search space at the cost of exploitation (Bharti & Singh, 2016a)). Other problems
are related to unsatisfactory outcomes, such as inaccurate clusters, and the behavior of
the algorithms that were selected is inappropriate for the problem of the TC instances
(Bharti & Singhl, |[2015a; Binul |2015; Forsati, Keikha, & Shamstard, 2015;/G.-G. Wang,
Gandomi, Alavi, & Deb, [2015). All available TC techniques based on metaheuristic
algorithms still face these problems. Solving the TC problem using metaheuristic algo-
rithms still need more in-depth investigation for several important reasons (Y. Guo, Li,
& Shao, 2015; Mohammed, Yusof, & Husni, 2015; |J. Wang, Yuan, & Cheng, 2015).
However, these reasons can be justified by the “no free lunch” theorem (Wolpert, 2013};

Wolpert & Macready, |1997)).

Fourth, the core effectiveness of the TD clustering techniques relies on the similar-

ity and distance functions of the TC algorithm. These functions are used in making the



decision to partition the document into an appropriate cluster based on the similarity or
distance value; these decisions affect the performance of the TD clustering algorithm
(Rao, Ramakrishna, & Babu, [2016). Similarity and distance measurements are stan-
dard function criteria used in the TD clustering domain as an objective function. Nev-
ertheless, the results of these measurements are different and lead to certain challenges
because of the variance between the values of similarity and distance measures for the
same document (L. M. Abualigah, Khader, & Al-Betar, 2016a; Forsati et al., [2013).
Determining the appropriate objective function to deal with the large TDs is difficult
(Mukhopadhyay, Maulik, & Bandyopadhyay, 2015; Mukhopadhyay, Maulik, Bandy-
opadhyay, & Coello,[2014). Multi-objective functions (multiple-criteria decision mak-
ing) are currently used in several domains as an alternative technique to yield better
results (George & Parthiban, 2015} [Saha, Ekbal, Alok, & Spandana, [2014). How-
ever, for the TD clustering technique, multiple-criteria decision making is relatively

unknown.

1.3 Research Objectives

The overall aim of this study is to develop an effective TD clustering method. The main
objective is to show that the improved method can outperform the other comparative

methods. This research has the following objectives:

¢ to find the best features:

— to enhance the weight score of the terms for the text FS technique in order

to improve the TD clustering;



— to improve the text FS technique for finding a new subset of more informa-

tive features to improve the TD clustering;

— to reduce the dimension of the feature space in the form of a low-dimensional

subset of useful features to improve the TD clustering;

* to improve the text document clustering using krill herd algorithm:

— to increase the effectiveness of the TD clustering technique and to reduce

1ts errors;
— to improve the global search ability and its speed of convergence;

— to enhance the quality of initial solutions obtained by the local search strat-
cgy;
— toincrease the likelihood of obtaining an accurate decision (similarity value)

between the document and clusters centroids in the k-mean clustering al-

gorithm.

1.4 Contributions

After the research objectives are achieved, this study will have the following main

contributions:

1. Introduced a new weighting scheme to provide a significant influence score for
the informative text features within the same document. This scheme focuses on
assigning a favorable term weight to facilitate the text FS technique and distin-
guishes among the features of the clusters by giving a high weight to essential

features in the same document.



2. Adapted metaheuristic optimization algorithms (i.e., genetic algorithm (GA),
harmony search (HS), and particle swarm optimization (PSO)) to find the best

features at the level of each document using a new FS method.

3. Introduced a new detailed DR technique to reduce the dimensional space of text
features based on the detailed term frequency (DTF) and detailed document fre-
quency (DDF) of each feature compatible with the size of its effect on the docu-
ment. The DDF of each feature at the level of all documents is compatible with

the size of its effect on the documents in partnership with its DTF value.

4. Adapted the basic krill herd algorithm (BKHA) and tuning its parameters for the

text document clustering problem.

5. The modified krill herd algorithm (MKHA) to improve the global search ability.
These modifications occur during ordering of the basic KH operators where the
crossover and mutation processes are invoked after updating the positions of the

krill herd algorithm (KHA).

6. The hybrid krill herd algorithm with the k-mean algorithm (HKHA) as a new
operator, which plays a basic role in the MKHA to improve the local search
ability. Hybridization is used to enhance the capacity of the KHA for finding
locally optimal solutions by taking the refining power of the k-means clustering

algorithm.

7. Introduced a multi-objective function based on the local best concept for the k-
mean algorithm to enhance the capacity of the KHA by achieving an accurate

local search, called multi-objective hybrid krill herd algorithm (MHKHA).



1.5 Research Scope

This study covers the main TC preprocessing steps (i.e., text FS and DR techniques)
and the metaheuristic algorithms (i.e., different versions of the proposed KHA) to deal
with the TDCP. The methods proposed in this study are applied to a large amount
of TDs as electronic pages (i.e., newsgroup documents appearing on newswires, In-
ternet web pages, and hospital information), modern applications (technical reports
and university data), and biomedical sciences (large biomedical datasets). Note, all
the datasets used in this research have been written in English language. These TDs
(datasets) are characterized by high-dimensional informative and uninformative text
features (Bharti & Singhl 2014b, |2015b; |L. Zheng et al., 2015). All of the proposed
methods need the number of clusters as input parameter K. Determining the correct
number of clusters for the given TD datasets is an important issue because the number
of document clusters is an essential parameter in TC problems. Standard TD datasets
with different sizes (i.e., number of documents, number of terms, and number of clus-
ters), constraints, and complexities are used in the TC technique to evaluate the pro-

posed methods.

1.6 Research Methodology

This section briefly discusses the stages of the research methodology, which are applied
to achieve the research objectives for improving the TD clustering technique, as shown

in Figure The detailed description is provided in Chapter [4]

The first stage is modeling and adapting GA, HS, and PSO to solve the text FS

problem (TFSP) with the novel weighting scheme and detailed DR technique. This



| Enhancing feature selection and dimension reduction techniques |

Enhancing krill herd algorithm for text clustering technique

Enhancing the objective function

Figure 1.1: Research methodology.

stage facilitates the TC task to deal with a low-dimensional subset of informative text
features, which reduce the computation time and improve the performance of the TD

clustering algorithm.

The second stage is adapting the basic KH algorithm (BKHA) and tuning its pa-
rameters to solve the text DC problem (TDCP). Then, three versions of the BKHAs
are modified (MKHAS) to improve the global (exploration) search ability. The three
versions of the HKHA with the k-mean algorithm (MKHAS) are used to increase the
performance of the TC technique by improving the local (exploitation) search ability.
These hybrid versions used the results of the k-mean algorithm as the initial solutions
in KHA to ensure balance between local exploitation and global exploration. Finally,
a multi-objective function is applied to obtain an accurate TC technique by combining

two standard measures (i.e., cosine similarity and Euclidean distance measurements).
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The multi-objective function is the primary factor used to obtain an effective clustering
method by deriving an accurate similarity value between the document and the cluster

centroid.

1.7 Thesis Structure

The rest of this thesis organized as follows:

Chapter 2| (Krill Herd Algorithm): This chapter discusses the principles of the
KHA. The analogy between the clustering technique and the optimization terms is

provided. The steps of the KHA are described in detail.

Chapter 3| (Literature Review): This chapter provides an overview of the text pre-
processing steps, TFSPs, and TDCPs with particular attention to TDs. This chapter
also examines several methods used to deal with TFSP and TDCP. This chapter also
presents a review of KHA in the areas of applications, modifications, and hybridiza-

tions across many fields.

Chapter [d|(Proposed Methodology): This chapter illustrates the modeling of TFSP
and TDCP. This study also includes a comprehensive description of the adapted re-
search methodology, including different weight schemes, metaheuristic algorithms for
text FS, DR techniques, and KHAs for TD clustering, and the sequence of the proce-

dures conducted.

Chapter [5|(Experimental Results): This chapter shows the experiments and results
of all the proposed methods and presents the comparisons of each method with the

others.
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Chapter 6| (Conclusion and Future Work): This chapter provides the research con-

clusion and possible future works.
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CHAPTER 2

KRILL HERD ALGORITHM

2.1 Introduction

Krill herd (KH) algorithm has a unique behavior to solve the text clustering problem.
This algorithm was introduced by Gandomi and Alavi in the year 2012 to solve global
optimization functions (Gandomi & Alavi, 2012). This section presents the modeling
of the basic-krill herd algorithm (KHA) for the TDCP (L. M. Abualigah, Khader, Al-

Betar, & Awadallahl| 2016)).

2.2 Krill Herd Algorithm

Krill herd (KH) is a swarm intelligence (SI) search algorithm based on the herding be-
havior of krill individuals (KIs). It is a population-based approach consisting of a huge
number of krill, where each krill individual (KI) moves through a multi-dimensional
space to search for close food and high-density herd (swarm). In KH as optimization
algorithm, positions of Kls are considered as various design variables and the distance
of the KI from the food is the objective function (Gandomi & Alavi, 2012; Mandal,
Roy, & Mandal, 2014)). The KH algorithm is considered in three categories: (1) Evo-
lutionary algorithms (2) Swarm intelligence (3) Bacterial foraging algorithm (Bolaji et

al., 2016).

13



2.3 Why the KHA has been Chosen for Solving the TDCP

The KH is a suitable algorithm for the TC technique according to: (i) the similarities
between the behavior of the KHA and the behavior of the TD clustering technique, (i)
KH algorithm obtained better results in solving many problems in comparison with

others common algorithms published in the literature.

The compatibility between KHA and TC involves searching for the closest food
(closest centroid) and high density groups (similar groups) (Bolaji et al., [2016). Den-
sity is one of the main factors that influence the success of all the algorithms used to
achieve coherence and similar groups. If documents in the same cluster are relevant,
then density is high, and vice versa. If the KIs are close to the food, then density is
high, and vice versa. Thus, the behavior of KIs is exactly the same as that of the TD

clustering technique (both of them are a swarm).

With regard to the KHA, each KI (document) moves toward the best solution by
searching for the herd (group) with high density (similar groups) and the closest food
(closest centroid). These factors are used as objectives to lead each krill to an optimal
herd around the food. With regard to the TC, each document moves toward the best
solution by searching for the similar cluster centroid and the cluster with a high density.
Moreover, these factors are used as objectives to lead each document to an optimal
cluster around the closest centroid. The relationship between the behavior of KHA
and the behavior of TD clustering is considered a strong feature in applying KHA to

solve the TDCP.
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2.4 Krill Herd Algorithm: Procedures

Due to the nature of this research, predation disperses Kls, leads to a decrease of the
average krill density and distances of the KH from the food location. This process
is the initialization phase in the KH algorithm. In the natural system, the objective
function of each document is supposed to be the distance or similarity from the cluster
centroid. The fitness function of each candidate solution is the total distance or simi-
larity between all documents with clusters centroid. The KH algorithm has three main
motion calculation to update individual positions; then it applies the KH operators,
which is inspired by the evolutionary algorithm. The procedures sequence of the basic

KH algorithm is shown in Figure 2.1]

Update krill < Crossover and
positions mutation
> Initialize krill
parameters
Motion calculation
Initialize krill No 1) Induced motion
population 2) Foraging motion
3) Physical Diffusion
Yes

Figure 2.1: A flowchart of basic krill herd algorithm (Bolaji et al.,[2016).

2.4.1 Mathematical Concept of Krill Herd Algorithm

The KH algorithm has three main steps to update the time-dependent position of each

KI as follows:
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* Movement induced by the presence of other KIs: only individual neighbors in

the visual field that affects the KI moving.

 Foraging activity: the KIs search for food resources.

* Random diffusion: the net movement of each KI based on density regions (Gan-

domi & Alavi, [2012).

The i, individual position is updated by the following Lagrangian model using Eq.

@I).

W N+ FtD; .

where for the krill i, &V; is the motion effect of the i,; individual from other KIs.
This value is estimated from the local swarm density, a target swarm density, a repul-
sive swarm density, and the target direction which is effected by the best KI. F; is the
foraging motion for the i;;, KI. This value estimated from the food attractiveness, food
location, the foraging speed, the last foraging action or movement and the best fitness
of the iy, krill so far. D; is the physical diffusion for the i, KI, where this value esti-

mated from two factors: the maximum diffusion speed of the KIs and random direction

(Gandomu, Talatahari, Tadbiri, & Alavi, [2013).

2.4.1(a) Movement Induced by other Krill Individuals

Movement induced is an illusion of visual perception in which a moving individual

appears to move differently because of neighbors moving nearby in the visual field.
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Theoretically, individuals try to keep the high density (Bolaji et al., 2016; |G. Wang et

al [2014). The direction of movement induced is defined by Eq. (2.2).

N/ = N" 0 + @, N{'?, (2.2)

where for krill i, N is the parameter for tuning the movement induced by other
individuals, it is determined experimentally (see Table[S.T1). o is estimated from the
local swarm density by Eq. (2.3)), w, is the inertia weight of the movement induced by

other individuals’ in range [0, 1], and Ni"ld is the last change or movement produced.

ai l()cal+atargel (23)
where, the Oclocal is the effect of the neighbors in i, individual movement, amrget
is the target direction effected by the j,;, KI. The effect of individual neighbors can be
considered as an attractive or repulsive tendency between the Kls for a local search

while the normalized values can be positive or negative (Bolaji et al., 2016; (Gandomi

& Alavi, 2012). The ailo“‘l is calculated by Eq. 1}

o7t = Z Ki % j, (2.4)

where, I/(\i, j 1s the normalized value of the objective function vector for the i, KI.

x; j is the normalized value of the related positions for the i, KI. The Ei, j 1s calculated
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by Eq. (2.5):

. Ki—K;

L = Kworst _ Kbest’ (25)

where, K; is the objective function of iy, KI, K; is the objective function of j,
neighbor (j = 1,2, ...,n). n is the number of all KIs, K?* and K%' are the best and

worst objective function values of iy, individual. The ; ; is calculated by Eq. (2.6).

Xj—x,'

) (2.6)
bej =il +¢

Xij =
where, x; is the current position, x; is the position of j;;, neighbor, ||x; —x;|| is the
vector normalization, it is used for calculating the neighbors of the i;;, KI by Eq. (2.7),

€ is a small positive number to avoid singularities (Jensi & Jiji, 2016; Mandal et al.,

2014)). The sensing distance is calculated by Eq. (2.7).

1 &
dei:§;"xi—xj|’, (27)

where, de; is the sensing distance for the krill i. Note, if the distance value between
two KIs is less than the current value, they are neighbors. Figure [2.2] illustrates the

movement of the KIs and their neighbors.

The known target vector of each KI is the highest objective function. The effect of

the best fitness on the j,;, individual is calculated by Eq. (2.8). This procedure allows
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Neighbor 3

Sensing Distance —

Neighbor 1

Neighbor 2

Figure 2.2: A schematic represents the sensing domain around a KI (Bolaji et al.,
2016).

the solution to move towards the current best solution and is calculated by Eq. (2.8).

a:arget = CbeSIEi,best;C\i,besh (28)
where,
best I
chet =2 (rand—i— —) ; (2.9)
max

CPest is the coefficient of individuals, I?Lbes, is the best objective function of the i,
KI, X; pest is the best position of the iy, KI, rand is a random number between [0, 1] for
improving the local exploration; / is the current iteration number; I, is the maximum

number of iterations (Gandomi & Alavi, [2012)).
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2.4.1(b) Foraging Motion:

The foraging motion of Kls is estimated by two effects, namely, current food and old
food location (L. M. Abualigah, Khader, Al-Betar, & Awadallah, 2016; |Bolaji et al.,
2016} [Mandal et al., 2014)). Food area or location is defined to attract KIs to the global

optima possibly. The foraging motion for i, individual is expressed by Eq. (2.10).

F=ViBi+ aF', (2.10)

where, Vy is the parameter for tuning the foraging speed, it is determined exper-

imentally (see Table [5.11), f; is the food location of the i;;, KI by Eq. (2.11)), s is

the inertia weight of the foraging speed in range [0, 1], and Fi"ld is the last foraging

motion.

Bi — ﬁlfo"d + Bibest’ (21 1)

where, [j’lzf 20 i< the food attractiveness of the i, K1, it is calculated by Eq. (2.12).

BP¢ is the best objective function of the i, KI.

d = ~
ﬁifoo _ CfoadKi,foodxi.,foow (2.12)

where,
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Cf"”dzz(l— ! ) (2.13)

Imax

~

K; fooa is the normalized value of the objective function of the i, centroid and
Xi food 1s the normalized value of the i, centroid position. The center of the individual’s

food for each iteration is calculated by Eq. (2.14).

n 1

1 =X
xfood = 2= Kl (2.14)
=1K;

where, n is the number of the KIs, K; is the objective function of the i;;, KI, and x;

is the i;;, position value. The effect of the best objective function of the i;;,KI is handled

by using Eq. (2.15).:

~

best -~
ﬁi = i,ibestXi,ibest (2.15)

where, I?i,bes, is the best previous objective function of the i, KI, X; food 18 the best
previous visited food position of the i,;, KI. The movement induced by other individuals

and the forging movement decrease with the increase in the time (iterations).

2.4.1(c) Physical Diffusion:

Physical diffusion is the net movement of each KI from a region of high density to a
region of low density or vice versa. The better position of the KI is the less random

direction. Physical diffusion values of individuals are estimated by two effects, namely,
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maximum diffusion speed (D,,) and random directional vector (8) (L. M. Abualigah,
Khader, Al-Betar, & Awadallah, 2016; Gandomi & Alavi, [2012; Jensi & Jiji, 2016

G. Wang et al.,2014). Physical diffusion for the i;;, KI is determined by Eq. (2.16).

pi—pre(1- L s (2.16)
Imax ’

where, D" is the parameter for tuning the diffusion speed, it is determined ex-
perimentally (see Table [5.11)), and O refers to the array that contains random values

between [-1, I]. I is the current iteration, ,;,,, is max number of iterations.

2.4.1(d) Updating the Krill Individuals:

The movement of the i;;, KI is influenced by the other KIs, foraging motion, and phys-
ical diffusion. These factors seek to obtain the best objective function for each KI.
The foraging movement and the movement induced by other KIs include two global
and two local strategies. These strategies are working in parallel to make KH a robust
algorithm (Bolaji et al. 2016; Gandomi & Alavi, [2012; (G. Wang et al., 2013). The

individual positions updated towards the best objective function by Eq. (2.17).

xi(I+1) = x;(I) + At (2.17)

E7

where,
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i UB;—LB)) (2.18)

At is an important and sensitive constant computed by Eq. (2.18), and 7 is the total
number of individuals. LB; is the lower bound, UB; is the upper bounds of the ith
variables (J = 1,2,....,n), and C; is a constant value between [0, 2]. It works as a scale

factor of the speed vector.

2.4.2 The Genetic Operators

Genetic algorithm (GA) is a stochastic meta-heuristic search method for the global
solution in a large search space. This algorithm is inspired by the classical evolutionary
algorithms (EA). The genetic operators encoded in a genome that performed in an
unusual way that permits asexual reproduction that leads to the offspring. However,
the sexual reproduction can swap and reorder chromosomes, giving birth to offspring
which includes a cross breeding of genetic information from all parents. This operation
is often called a crossover, which means swapping of the genetic information. To avoid
premature convergence, the mutation operator is used to increase the diversity of the
solutions (H. Chen, Jiang, Li, & Li, 2013} |G.-G. Wang, Gandomi, & Alavi, 2014b).
Genetic operators are incorporated into the KH algorithm to improve its performance

(Bolaj1 et al., 2016; Gandomi & Alavi, 2012).

2.4.2(a) Crossover Operator of KH Algorithm:

The crossover operator is an effective procedure for global solutions. This procedure

is controlled by a probability Cr by generating a uniformly distributed random value
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between [0, ] (G.-G. Wang, Gandomi, & Alavi, 2014b). The mth component of x; ,,

is determined as the following:

Xpm, if rand <Cr
Xim = (2.19)

Xgm else

Cr = 0.2K; pest, (2.20)

where, the crossover probability is determined by Eq. (2.19). p and ¢ refer to the
two solutions which are chosen for the crossover operator, p,q € {1,2,.....i — 1,i+
1,....,n}, the Cr increases with decreasing fitness function, I?Lbest = K; — Kb K; is

the objective function value of the i;;, KI, and Kbes is the best objective function value

of the i, KI.

2.4.2(b) Mutation Operator of KH Algorithm:

The mutation operator is an effective strategy for a global solution. This strategy is
controlled by a probability Mu (G. Wang et al., 2014). The mutation operator is deter-

mined as the following:

Xgbest,m + .u(xp,m _qu), if rand < Mu
Xim = 2.21)

Xim, else
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