74 research outputs found

    Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling

    Get PDF
    This is the post-print version of the final paper published in Fuel. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.In this work, the effects of a standard ultra-low sulphur diesel (ULSD) fuel and a new, ultra-clean synthetic GTL (gas-to-liquid) fuel on the performance, combustion and emissions of a single-cylinder, direct injection, diesel engine were studied under different operating conditions with addition of simulated reformer product gas, referred to as reformed EGR (REGR). For this purpose various levels of REGR of two different compositions were tested. Tests with standard EGR were also carried out for comparison. Experiments were performed at four steady state operating conditions and the brake thermal efficiency, combustion process and engine emission data are presented and discussed. In general, GTL fuel resulted in a higher brake thermal efficiency compared to ULSD but the differences depended on the engine condition and EGR/REGR level and composition. The combustion pattern was significantly modified when the REGR level was increased. Although the extent of the effects of REGR on emissions depended on the engine load, it can be generally concluded that an optimal combination of GTL and REGR significantly improved both NOx and smoke emissions. In some cases, NOx and smoke emission reductions of 75% and 60%, respectively, were achieved compared to operation with ULSD without REGR. This offers a great potential for engine manufacturers to meet the requirements of future emission regulations.Shell Global Solutions UK, the Government of Castilla-La Mancha (Spain) and the Royal Thai Government

    Hybrid Technique for Arabic Text Compression

    Get PDF
    Arabic content on the Internet and other digital media is increasing exponentially, and the number of Arab users of these media has multiplied by more than 20 over the past five years. There is a real need to save allocated space for this content as well as allowing more efficient usage, searching, and retrieving information operations on this content. Using techniques borrowed from other languages or general data compression techniques, ignoring the proper features of Arabic has limited success in terms of compression ratio. In this paper, we present a hybrid technique that uses the linguistic features of Arabic language to improve the compression ratio of Arabic texts. This technique works in phases. In the first phase, the text file is split into four different files using a multilayer model-based approach. In the second phase, each one of these four files is compressed using the Burrows-Wheeler compression algorithm

    Diesel exhaust-gas reforming for H2 addition to an aftertreatment unit

    Get PDF
    This is the post-print version of the final paper published in Chemical Engineering Journal. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The work described in this paper has been undertaken as part of the design of an integrated system comprising a diesel engine, an exhaust-gas fuel reformer and a NOx aftertreatment unit. The exhaust-gas reformer is used to provide hydrogen-rich reformate to the NOx aftertreatment unit, containing a hydrocarbon-SCR catalyst, in order to improve its NOx reduction activity at low exhaust-gas temperatures. The reformer configuration and operating parameters have been examined in order to optimise the performance of the hydrocarbon-SCR catalyst, which is promoted by the presence of H2 but inhibited by CO. The length of the catalyst bed inside the reformer is a key factor in determining the extent to which the water-gas shift reaction can contribute to the reforming process, and therefore strongly influences the proportions of CO and H2 in the reformate. However, it is also necessary for the reactant ratios at the reformer inlet to be controlled in response to changes in the engine operating conditions. In practice, this means that the rate of fuel addition to the reformer needs to be optimised for different exhaust gas compositions and space velocities

    Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels

    Get PDF
    AbstractA Liquefied Petroleum Gas (LPG)-diesel dual fuelled combustion experimental study was carried out to understand the impact of the properties of the direct injection diesel fuels, such as rapeseed methyl ester (RME) and gas-to-liquid (GTL), on combustion characteristics, engine performance and emissions. The experimental results showed that up to 60% of liquid fuel replacement by LPG was reached while keeping engine combustion variability within the acceptable range and obtaining clear benefits in the soot-NOx trade-off. However, the amount of LPG was limited by adverse effects in engine thermal efficiency, HC and CO emissions. LPG–RME showed a good alternative to LPG-diesel dual fuelling, as better engine combustion variability, HC, CO and soot behaviour was obtained when compared to the other liquid fuels, mainly due to its fuel oxygen content. On the other hand, NOx emissions were the highest, but these can be balanced by the application of EGR. LPG–GTL dual fuelling resulted in the highest NOx emissions benefit over a wide range of engine operating conditions. The high cetane number and the absence of aromatic of GTL are the main parameters for the more favourable soot-NOx trade-off compared to LPG–ULSD (ultra low sulphur diesel) dual fuelling

    Development of a Diesel Surrogate Fuel Library

    Full text link
    [EN] Diesel fuel is composed of a complex mixture of hundreds of hydrocarbons that vary globally depending on crude oil sources, refining processes, legislative requirements and other factors. In order to simplify the study of this fuel, researchers create surrogate fuels to mimic the physical and chemical properties of Diesel fuels. This work employed the commercial software Reaction Workbench - Surrogate Blend Optimizer (SBO) to develop a Surrogate Fuel Library containing 18 fuels. Within the fuel library, the cetane number ranges from 35 to 60 (in increments of 5) at threshold soot index (TSI) levels representative of low, baseline and high sooting tendency fuels (TSI = 17, 31 and 48, respectively). The Surrogate Fuel Library provides the component blend ratios and predicted properties for cetane number, threshold soot index, lower heating value, density, kinematic viscosity, molar hydrogen-to-carbon ratio and distillation curve temperatures from T-10 to T-90. A market petroleum Diesel fuel with a cetane number of 50 and a threshold soot index of 31 was selected as the Baseline Diesel Fuel. The combustion, physical and chemical properties of the Baseline Diesel Fuel were precisely matched by the Baseline Surrogate Fuel. To validate the SBO predicted fuel properties, a set of five surrogate fuels, deviating in cetane number and threshold soot index, were blended and examined with ASTM tests. Good agreement was obtained between the SBO predicted and ASTM measured fuel properties. To further validate the Surrogate Fuel Library, key properties that were effected by altering the component blend ratios to control cetane number and TSI were compared to a set of five market Diesel fuels with good results. These properties included density, viscosity, energy density and the T-10 and T-90 distillation temperatures. The Surrogate Fuel Library provided by this work supplies Diesel engine researchers and designers the ability to analytically and experimentally vary fuel cetane number and threshold soot index with fully-representative surrogate fuels. This new capability to independently vary cetane number and threshold soot index provides a means to further enhance the understanding of Diesel combustion and design future combustion systems that improve efficiency and emissions.Szymkowicz, P.; Benajes, J. (2018). Development of a Diesel Surrogate Fuel Library. Fuel. 222:21-34. https://doi.org/10.1016/j.fuel.2018.01.112S213422
    • …
    corecore