17,717 research outputs found

    Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    Get PDF
    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed

    On-off intermittency and amplitude-phase synchronization in Keplerian shear flows

    Full text link
    We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown that the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of nonlinear waves correspond, respectively, to nonattracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three-dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.Comment: 17 pages, 10 figure

    Description of Atmospheric Conditions at the Pierre Auger Observatory Using Meteorological Measurements and Models

    Full text link
    Atmospheric conditions at the site of a cosmic ray observatory must be known well for reconstructing observed extensive air showers, especially when measured using the fluorescence technique. For the Pierre Auger Observatory, a sophisticated network of atmospheric monitoring devices has been conceived. Part of this monitoring was a weather balloon program to measure atmospheric state variables above the Observatory. To use the data in reconstructions of air showers, monthly models have been constructed. Scheduled balloon launches were abandoned and replaced with launches triggered by high-energetic air showers as part of a rapid monitoring system. Currently, the balloon launch program is halted and atmospheric data from numerical weather prediction models are used. A description of the balloon measurements, the monthly models as well as the data from the numerical weather prediction are presented

    Relativistic electromagnetic waves in an electron-ion plasma

    Get PDF
    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations

    Edge of Chaos and Genesis of Turbulence

    Full text link
    The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable travelling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space

    Development of a magneforming process for the fabrication of thin-wall tungsten cylinders final report

    Get PDF
    Magneforming process - high energy rate metal forming technique for fabrication of thin wall tungsten cylinder

    Self-modulation of nonlinear waves in a weakly magnetized relativistic electron-positron plasma with temperature

    Get PDF
    We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrodinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics.CONICyTFONDECyT 1110135 1080658Brazilian agency CNPqBrazilian agency FAPESPMarie Curie International Incoming Fellowshiphospitality of Paris ObservatoryInstitute for Fusion Studie

    Self-modulation of nonlinear Alfven waves in a strongly magnetized relativistic electron-positron plasma

    Get PDF
    We study the self-modulation of a circularly polarized Alfven wave in a strongly magnetized relativistic electron-positron plasma with finite temperature. This nonlinear wave corresponds to an exact solution of the equations, with a dispersion relation that has two branches. For a large magnetic field, the Alfven branch has two different zones, which we call the normal dispersion zone (where d omega/dk > 0) and the anomalous dispersion zone (where d omega/dk < 0). A nonlinear Schrodinger equation is derived in the normal dispersion zone of the Alfven wave, where the wave envelope can evolve as a periodic wave train or as a solitary wave, depending on the initial condition. The maximum growth rate of the modulational instability decreases as the temperature is increased. We also study the Alfven wave propagation in the anomalous dispersion zone, where a nonlinear wave equation is obtained. However, in this zone the wave envelope can evolve only as a periodic wave train.CONICyT 21100839 74110049FONDECyT 1110135 1110729 1080658 1121144CNPqEuropean Commission for a Marie Curie International Incoming FellowshipInstitute for Fusion Studie
    corecore