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RELATIVISTIC ELECTROMAGI'TETIC WAVES IN AN ELECTRON-ION PLASMA 

Abraham C.-L. Chian* and Charles F. Kennel 

Institute of Geophysics and Planetary Physics 
University of California 
Los Angeles, Califoriüa 90024, USA 

ABSTRACT 

High power laser beams can drive plasma particles to relativ-
istic energies. An accurate description of strong waves requires 
the inclusion of ion dynamics in the anal ysis. The equations govern-
ing the propagation cf relativistic alectroiagnetic waves in a cold 
electron-ion plasma can be reduced to two equations expressing con-
servation of energy-momentum of the system. The two conservtion 
constants are functions of the plasma stream velocity, the wave 
velocity, the wave amplitude and the electrbn-ion mass ratio. The'--
dynamic parameter, expressing electron-ion momentum conservation in 
the laboratory frame, can.be regarded as an adjustable quantity, a 
suitable c1-oic- e, of which will yield self-consistent solutior.s when 
other plasma parameters have been specified. Circularly pQlarized.. 
electromagnetic waves and electrostatic plasma waves are used as 
illustrations. 

INTRODUCTION 

Recently, there has been considerable interest in the subject of 
strong electromagnetic waves in plasma because of its ?pcations.':  
to laser-plasma interaction and pulsar electrodynamics' - 1• 

*On leav from: Institute for Space Research (INPE/CNPq), C.P. 515, 
12200-S5o Jos dos Campos, SP, Brazil 

(To be published in "Laser Interaction and Related Plasma Phenomena" 
Volume 6, H.Hora and G.H.Miley, eds., Plenum Press(1983))



In the presence of an intense laser field, the plasma particles 
can acquire quiver oscillation energies exceeding particle rest mass 
energies such that relativistic effects of particle mass variation 
have to be taken into account (4) . Several studies have demonstrated 
that relativistic effects are of significant importance in such 
laser-plasma phenomena a r.esonnt absorption 5", salitog forma- 

tion	 self	 density density Rrofile modification	 and pro- 

duction of large DC magnetic field(').-- 

In earlier works on strong traveling waves (see e.g. Ref. 10-12) 
only the electron motion was considered, whereas the motion of posi-
tive ions was ignored. The results obtained thus apply to compara-
tively small laser intertsities for which the ion dynamics is negli-
gible because of its large rest mass. Nevertheless, when a very in-
tense laser field is present, ions can attain considerable quiver 
velocities. For instance, it has been suggested that the ion dyna-
mics ma' 5 e important in the later stages of the resonant absorption 
process" ; in a recent study of the inverse Faraday effect 13 it 
was shown that the DC magnetic field induced by a circularly polar-
ized laser can be greatly reduced by the effects of ion motion. 
Therefore, an accurate description of strong waves requires the in-
clusion of ion dynamics.	 - 

In the theory of relativistic electromagnetic .waves in an elec-
troh-ion plasma a dynamic parameter, relating electron and ion mo-
menta, necessarily appears. In previous papers (see e.g. Ref. 14)., 
strong wave solutions were obtained by treating the dynamic para-
meter either as an arbitrary constant or as a plasma drift velocity. 
This leads to mathematically correct, but physically misleading 
solutions. 

The purpose of this paper is to elucidate the role played by 
the dynamic parameter in the determination of self-consistent strong 
wave solutions. It is shown that, the problem can be reduced to two 
conservation relations for the energy-momentum of the system. In 
the laboratory frame, the dynamic parameter expresses conservation of 
electron-ion momenta. In addition, there is an amplitude parameter 
that ex presses conservation of electromagnetic field-particle energy 
density. These two parameters are functions of the plasma stream 
velocity, the wave velocity, the wave amplitude and the electron-
ion mass ratio.. We will conclude that the dynamic parameter must be 
regarded as an.adjustable quantity, equivalent to an eigenvalue of 
the system, a suitable choice of which will yield self-consistent 
wave solutions when the value of the amplitude parameter and other 
plasma parameters have been allocated.	 .	 .
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CONSERVATION RELATIONS IN THE LABORATORY FRAME 

Consider a cold two-fluid electron-ion plasma. The laboratory 
frame is chosen to be an arbitrary frame in which a traveling wave 
propagates with a constant velocity c2/n [where c 	 speed of light, 
n = index of refraction and 2 (o,o,1)], the plasma moves with a 
certain stream velocity V 5 (where -c < V < c), and the solutions 
depend on space and time coordinates only through the combination 

•	 O=t-nz/c. 

The governing equations written in terms of the phase 0 are the 
relativistic equations of motion

4. -3-

	

q a	
V XB 

(1 - nv/c) -s- (Hr)	 + a
	 '	 (1) 

the equations of continuity 

dN

	

a-	 nd
- - (NV) = 0	 -.	 ,	 (2) 

and Maxwell's equations 

dE 
-	 = 4rre(N. - Ne ) •	 .'	 (3) 

dB

	

•	 (4) 

-	 - 
dE 'dB flZX	 (5) d9	 d6 

•	 -3-	 - 

dB-dE 
-nz x - = - ± 47. e(Nv - NV)	 (6) 

-½ where y = (1 - v 2 Ic 2 )	 and a = (e,i). 

Conditions describing the average particle number density and 
flux can be obtained by taking the phase-average of Eqs. (3) and 
(6),.. which gives	 • 

•	 <N>=<N.>	 •	 (7) 

	

e	 i 

	

-	 + 
<N v > = <N . v>-	 ,	 (8) 

	

e 	 ii



.9. 

V'1 -3.	 -	 S.-	 . V 
2	 '	 $ 2 

r(1 - VV 2 /c )

'Vt -v 

1 

S

TNI /C 
sz

(12) 

where the angular bracket denotes averaging over one period in 0. 
In nonlinear theory, it is convenient to define the plasma stream 
velocity as the ratio of the average particle flux to the average , 

number density	 I, follows, from Eqs. (7) and (8) that the 


electron and ion streaming velocities are equal 

<N v >	 <N 1 
v 

1 
.> 

-3;	 ee 
- <N >	 <N >	 - 

e	 I 

A stationary plasma corresponds to the particular case in which 

= 0.	 . 

It is easy to show that 	 , as'defined.by Eq. (9), Lorentz-




transforms like any velocity. Suppose there are two frames S' and 
S, where S has a velc'ity Vz relative to S'. Then, the averaged 
particle flux and number densities in two frames are related by 

. 
<Nv + ,>	

.
9= <N ! v , ? > , <Nv > = r(<N'v '> - V<N'>) ;	 (10) 

z	 Z 

<N> = r(<N'> - V<N'v z 
'>/.c 2 )
	 ,
	 (11) 

2 '-½ 
where	 = (x,y) and r = (1 - v /c) . Note that phase averaging is 

a Lorentz-invariant operation. Dividing Eq. (10) by Eq. (11) gives 

4 

which indeed satisfies the Lorentz transformation for velocities. 
This suggests that if in S 1 the plasma has a certain stream velocity 
V, then an observer in S that has a velocity V relative to S' will 

"see" a stationary p lasma with	 = 0. Hence, he nonlinear disper- 

sion relation for a streaming plasma can be obtained from the non-
linear dispersion relation for a stationary plasma by a Lorentz 
transformation(12,15)16). 

The behavior of ' electron and ion number densities follows upon 

integrating Eq. (2), giving 

* 
N 

•	 o	 1-nv Ic 
•	 02 

where N = <N > (1 - nV. s 
•Z 
Ic).


a 

(13)



An integrati 

-
B = nz x E + 

where <B> denotes 
netized plasma is

)fl of Eq. (5) gives 

<B> 

the xnagnetostatc field. 
considered so <B>	 0.

,
	 (14) 

In this paper an unm.ag-

5 

A conservation relation for electron and ion momenta can be ob-
tained from the transverse and longitudinal components of Eq. (1), 
naine1y(7),

+ 'eL = D,	 ,	 (15) 

	

(u. - try 1) + p (u	
- 'e = D
	 (16)

ez 

+

	

 
where u	 yv 

+
/c, p	 me//mi and D is a constant vector. Eqs. (15) and 

(16) can be combined into a single equation 

•	 .+p-n(y.+py)z=	 .	 .	 (17) 

Thus, the dynamic parameter D expresses Consevatin of electron-
ion momenta. In the absence of . a wave, v = v i

 = V, Eq. (17) be-
comes

e  

(1 + p) (1	 V
2 

/C
2-11	

- n(1 + p) (1 - V 2/c 2)	 = i, (18) 

4. 
which shows that D is a function of V54 xi and p. It will be seen 
later that for large wave amplitudes D alsb depends on the wave in


	

tensity. In linear theory, 	 =	 +	 ( where	 denotes small 
perturbations), Eq. (17) reduces to 

. 
ip 

+p 
ep 

	

v	 = 0	 .	 (19) 

Hence, in this limit, D is still given by Eq. (18) because the aver-
age values of the perturbed particle velocities are zero. 

An energy conservation relation can be obtained as follows. 
A scalar product of Eq.-(I) with v /c 2 gives 

dy • eN 

	

2 e	 e	 + 
mc	 = -	 E V	 '	 ( 20) 

2

	

dy 
i	

eN. 

	

•	 i-	 --

	

m1c --- =--E v1	 •	 (21)



where Eq. (13) has been applied. Adding Eqs. (20) and (21), then 
making use of Eqs. (5) and (6), it yields 

dy	 dy 
2	 e2	 j	 1	 d	 2 + B 2 )	 .	 (22) m 	 +mC 

do e 8nN 

An integration of Eq. (22) then yields a conservation relation for 
the electromagnetic field-particle energy density 

E2+B2	 *	 2	 *	 2	 * +Nmyc +NmyC =Nmc 2W (23) 
8ir	 e 	 ii	 e  

where W is a scalar constant. The energy constant W can be consid-
ered an amplitude parameter that characterizes the magnitude of wave 
intensity, as will be shown later. In the absence of a wave, Eq. (23) 
reduces to 

W = (1 + i/u) (1- V 2 /c 2 ) Ti	 .	 ( 24) 
S 

W must exceed the above value for a wave solution to exist. 

CIRCULARLY POLARIZED ELECTROMAGNETIC  WAV ES 

Purely transverse, circularly polarized electromagnetic wave 
have been studied extensively (see e.g. Ref. 1, 17-19). For the case 
of an unmagnetized electron-ion plasma streaming in the wave direc-
tion, the dispersion relation in the laboratory frame is. 

-2	 2	 -	 22½. 

	

W .	 (1-V /c) 
2	 pe	 1	 s 

'	 - 2<	 22-	 2	 ' 

	

L(1+')	 (1+uv) 
where w2= 4TT<Na>e2/ma and v	 eEm/m wc is an invariant parameter 
that measures the wave amplitude. Eq. (5) relates the wave velocity, 
the plasma stream velocity, the electron-ion mass ratio and the 
wave amplitude. The aim of this paper is to dontrate that similar 
dispersion relations for other. strong waves can also be obtained 
through a proper treatment of the conservation parameters W'and D. 

ELECTROSTATIC PLASMA WAVES 

-

	

	 As an illustration, consider the case of electrostatic plasma 
waves. For longitudinal waves, UCL = ( O,O,ua) and the two conser-
vation relations Eqs. (17) and (23) reduce, respectively, to



7 

(u. - ny.) + 11(U -
	

= D	 ,	 (26) 

1 
du 2W-yY./p	 ,	

(27) 
-	 dT	 (1. - nu/y) 

where	 = wpe2 8 2 (1 - nV/c). Evidently, Eq. (27) indicates that an 
oscillatory solution exists, with a period of oscillation given by 

U 
'2 
I nu /y 

	

e 	 du.	 ,	 (28) P
pe	 (W-y-y./)1	

e Ci)

Jul 

where the turning points u1 12 are determined by the equation 
Ye + = W. Note that y1 is related to Ue and Ye through Eq. 
(26). The general dispersion relation (28) recovers the electron 
plasma result (12) if the ion term y./.i is ignored. 

Before discussing tFe general solutions of Eq. (28), consider 
first the phenomenon of wavebreaking which may occur for subluininous 
waves and is relevant to the laser-plasma interaction (5) . A condi-
tion for the occurrence of wavebreaking in the laboratory frame can 
be obtained as follows. First notice from Eq. (13) that, for a 
stationary plasma, a traveling wave solution exists (i.e. 0<N<') 
only if the condition 

V < C/fl
	

(29) 
a 

is satisfied. Upon transformaton from the stationary plasma case 
to the stream i ng plasma case1121 the condition (29) then becomes 

rv < v .< c/n	 if	 V < c/n 
C	 a	 S	 (30) 

L c/n < v <v	 if	 V > c/n a	 C	 S 

where

v	 i + v 2/c 2 - 2nV ./c 

= 2V/c- n(l + V2/c2) 

Hence, for subluminous longitudinal waves, the electron and ion 
velocities are subject to the conditions (29) and (30), whose 
violation implies the occurrence of wavebreaking. A graphical dis- 
play of Eq. (30) in Fig.. 1 shows that, fOr a given wave velocity, 

ill
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Figure 1. Variation of v a /c and 1/n with normalized wave velocity 
for Vs/c = 0.5. Shaded region indicates wavebreakitig. 

the range of ye/c permitted for traveling wave solutions is bounded 
by the 1/n 'curve and the va/c curve. The shaded region represents 
the domain in which wavebreaking takes place. 

The problem of wavebreaking can further be clarified by examin-
ing the conservation relations in the wave frame, for which there is 
no time dependence. In the wave frame, the governing eqütioflS be- 

come

8 

(31) d 
V —
 

eyvi-  adz	 a 	 in a 

N v + Lv. N V = constant 
ee	 ii	 00

,	 (32)
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dE = 4ne(N. - N ) 	 (33) 
d 	 1.	 e 

The above systf equations can be combined to give two conserva- 
tion relations' Oj 

2	 2	 2 
mereC + m.y.c = inC D 	 ' 

2 
N V in y V + N V. m.y.v. -	 = N V in cW	 (35) 
o o e e e	 00111	 8n. ooe.1 

Eq. (34) c9rresponds to Eq. (26) in the laboratory frame with D 1 = 

- (1- 1/n ) 
1
D/n. Therefore, the dynamic paramete expresses 

Ye 
0.95	 •1 D/(1+i)	 1.1 

-374.8	 1

max 

L	 I 

	

I	 I 

	

.1	 I 

	

I	 I 

	

I	 I 

	

•1	 •I• 

.1 

1	 1.! 

	

I	 I 

-3752 F 
Figure 2. Variation of f with Y for D 1 = 1.021.( = equilibrium 

value of.-D i g n = 5, p	 1/1837, Vs = 0).



[IB] 

0.6 
w./wp

0.2

conservation of electron-ion energy in the wave frame. Eq. (35) 
corresponds to Eq. (27) in the laboratory frame and can be .rewritten 
as

	 ^ dye 2 

	

I -	 =w_1'()	 36 

	

dr	 1	 1e 
with

	

f (Y = 	 e2 - )½	 - D1)2 -	 (37) 

where Ti = zwpei (!Vo I/c 3 ) ½ 1 Uipe, = 4Noe2/me and	 = -(1 - 1/n2). 
Hence, the amplitude parameter expresses conservation of electro-
magnetic field-particle momentum density in the wave frame. A 
typical plot of f as a function of Ye is displayed in Fig. 2, 

A 

10 

00.5	 1	 1.5.	 2 
•	 Va/C 

Figure 3. Variation of w/u with va/c for indicated values of 
Vs/c; n = 0.	 •	 .
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which shows that oscillatory solutions exist only if W1 lies in the 

interval 

	

W	 (38) 
min	 max 

	

where	 -[D12 - (1 + u)2]½/p and Wiflax = _[(P	 D1)2 - 
It is easy to see from Fig. 2 that wavebreaking occurs if W 1 exceeds 

Wmax . Furthermore, it shows that W1 determines the amplitude of the 
wave oscillations. 

The general properties of electrostatic plasma waves in the 
laboratory frame can be computed from Eq. (28). W't-.en evaluating a 
particular solution it is necessary to decide what values should be 
assigned to the two conservation parameters W and D. Our wave frame 
analysis indicates- that W can be considered as an amplitude para-
meter. To obtain a specific solution with given plasma stream velo- 
city, wave velocity, the electron-ion mass ratio and the wave ampli-
tude, the dynamic parameter D must be adjusted accordingly so as to 
render self-consistency to the solution. Fig. 3 shows the variatiOn 
of the cut-off frequency w/w (where w, = Wpe2 + W pi 2 and n = 0) 

with va/ c (where VC = lvi - v21, v112 being the turning points of Ve 
oscillations) for different values of plasma stream velocity. The 
computations are carried out for a hydrogen plasma (p = 1/1837). 
In Fig. 4, the variation of the self-consistent dynamic parameter D 
with Ua (where Ua = I-ui - u21) for a stationary plasma is displayed 
for different values of n. It confirms that the dynamic parameter 
is a function of wave amplitude. Note that for small wave thnpli-
tudes, D stays very close to . the value given by Eq. (18). 

CONSERVATION RELATIONS IN THE SPACE-INDEPENDE NT FRAME 

For superhiminous electroma gnetic waves the analysis can be 

simplified by referring to the space-independent frame which has a 
velocity ncz with respect to the laboratory frame. The basic equa-
tions in this frame are 

+ 
d(y a v n ) 	 q 

d-r	 in 
a 

N = N.	 -N = constant 
e	 :1. 

B = constant	 0 

dE	 -- 
+ 47Ne(v. - Ve) = 0

(39)

(40) 

J.
	 (41) 

(42) 

The above system of equations can be combined to yield two conser-
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Figure 4. Variation of D with u for indicated values of n; 
=0.	

a 
S 

vation relations (18) 

-	 -9.	 -9. 

	

in y V + m.y.v. = m c D	 (43) 
eee	 lii	 e	 2 

	

+ Ninyc +	 (44) 

Eq. (43) corresponds to Eq. (17) in the laboratory frame. Upon 
transforming to the laborator frame, the transverse components of 
Eq. (43) gives Eq. (1 .5) with D, = D,, while the 1onitudinal compo-
nent of Eq. (43) gives Eq. (165 with D2z = (1 - n2)5D. Hence the 
dynamic parameter expresses conservation of electr on—ion momentum in 
the space-independent frame. Eq. (44) corresponds to Eq. (25) in 
the laboratory frame and can be rewritten as

 du 

4
 ( )

^ 2. 

+ y + y./p	 (45) 

:-•--



where t2 = wpe2t Wpe2 = 4rNe2/me and W 2 = (1 - n2 ) IW . Therefore, 
the amplitude parameter expresses conservation of electromagnetic 
field-particle energy density in the space-independent frame. 1 For 
the special case . àf5 = D2z, W2 must exceed [D 2 2 + (1 +.p).2]/3.i for 
a solution to exist( 19) 	 An elegant formulation of the energy-
momentum conservation relations in terms of the Maxwell's stress 
tensor in the space-independent frame can be foundin Ref. 21. 

The two energy-momentum relations (43) and (45) can be used to 
study all possible wave solutions. As in the case of electrostatic 
plasma oscillations, a proper handling of the conservation constants, 

and W 2 , is essential for obtaining self-consistent solutions. 

The case of circularly polarized electromagnetc waves serves 
to demonstrate the correct behavior of the two conservation con-
stants. For simplicity, consider the plasma to be stationary in the 
laboratory frame (i.e., V = 0). For circularly polarized waves 	 e 
and Ij are constants given, in the space-independent frame, by( A) 

Ye 
= (1 

^	

= (i^312v2 ½	
(46) 

where v	 eEex/m wc as defined, in Eq. (25). Substitution of Eq. 
(46) into Eqs. (4) and (45), respectively, yields 

2 2½	 2 ½, 
D2	 -n(1 -	 (1 + 31 V ) + p(1 + V ) jz	 ,	 (47) 

= 2/2 + (1 - 2)½[(1 
± 2)½ 

+. ( 1 +	 V 
2 2 ½	

• (48) ii	 ) hi 

--	 2	 2 
Note that D2..L = 0 and (due/dT2) = v for circularly polarized waves. 
Eqs. (47) and (48) show clearly that the energy-momentum conservation 
Parameters are functions of the wave velocity, the wave amplitude and 
the electron-ion mass ratio. In addition, from Eqs. (47) and (48) 
one obtains the following relation 

+ 

D2 =	 (2/2	 '2	 ,	
(49) 

which shows explicitly that for a given amplitude parameter W 2 there 
is only one value of the dynamic parameter 2 that satfsfies self- - 
consistent solutions. 

- CONCLUSION 

It has been shown that the equations governing the propagation 
of relativistic electromagnetic waves in an electron-ion plasma can

13 



be reduced to two energy-momentum conservation relations. The two 
conservation constants, , the amplitude parameter and the dynamic 
parameter, respectively, are functions of the plasma stream velocity, 
the wave velocity, the electron-ion mass ratio and the wave in-
tensity. In order to obtain self-consistent solutions the. dynamic 
parameter must be chosen appropriately when other parameters have 
been specified. 
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