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RELATTIVISTIC ELECTROMAGNETIC WAVES IN AN ELECTRCN-ION PLASMA

Abraham C.-L. Chiazn* and Charles F. Kennel
Institute of Geophvsics and Planetary Physics
University of Califormnia

Los Angeles, Califormia 90024, USA

ABSTRACT

High power laser beams can drive plasma particles to relativ-
istic energies. An accurate description of streng waves reguires

the inclusion of ion cyvmamics in the znalysis. Tne equations govern-—-

ing the propagation cf relativistic electrcaagnetic waves in a cold
electron-ion plasma can be reduced to two equaticns expressing con-
servation of energy-momentum of the system. The two conservation
constants are functions of the plasma stream velocity, the wave
velocity, the wave amplitdde.and the electron~ion mass ratio. The~~
dynanic parameter, expressing electron-ion momentunr ccnservation in
the laboratory frame, can.be regarded a&s an adjustable quantity, a
suitable choice of which will yield self-cemnsistent sclutions when
other plasma parameters have been specified. Circularly polarized.
electromagnetic waves and electrostatic plasma waves are used as
illustrations.. ’

INTRODUCTION

Recently, there has been considerable interest in the subject of

strong electromagnetic waves in plasma because of its‘%fp%}cations}
to laser-plasma .interaction and pulsar electrodynamics .

.

*0On leave from: Institute for Space Research (INPE/CﬁPq), C.P. 515,
12200-S3o Jeose dos Canpos, SP, Brazil

(To be publisﬁed in "Laser Interaction and Related Plasma Phenomena
Volume 6, H.Hora and G.H.Miley, eds., Plenum Press(1983))
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Ir the presence of an intense laser field, the plasma particles

can acquire quiver oscillation energies exceeding particle rest mass
v energies such that relativistic effects of particle mass variation

have to be taken into account(4). Several studies have demonstrated
that relativistic effects are of significant importance in such
laser—glasma phenomena a§ resonant absorption 3, sblitog forma-
t:ion(6 , self-focusing(7 , density Brofile modification( ) and pro-
duction of large DC magnetic field 9 .- ' '

In earlier works on strong traveling waves (see e.g. Ref. 10-12)
only the electron motion was considered, whereas the motion of posi-
tive ions was ignored. The results obtained thus apply to compara-
tively small laser intensities for which the ion dynamics is negli-
gible because of its large rest mass. Nevertheless, when a very in-
tense laser field is present, ions can attain considerable quiver
velocities. For instance, it has been suggested that the ion dyna-
rics ma¥5?e important in the later stages of the resonant absorption
process ; in a recent study of the inverse Faraday effect it
was shown that the DC magnetic field induced by a circularly polar-
ized laser czn be greatly reduced by the effects of ion motion.
Therefore, an accurate description of strong waves requires the in-.
clusion of ion dynamics. 3 :

In the theory of relativistic electromagnetic .waves in an elec-
tron-ion plasma a dynamic parameter, relating electron and ion mo--’
menta, necessarily appears. In previous papers (see e.g. Ref. i4),
strong wave solutions were obtained by treating the dynamic para-
meter either as an arbitrary constant or as a plasma drift velocity.
This leads to mathematically correct, but physically misleading
sclutions. : : : '

' The purpose of this paper is to elucidate the role played by
the dynamic parameter in the determination of self-consistent strong
wave solutions. It is shown that, the problem can be reduced to two
conservation relations for the energy-momentum of the system. 1In
the laboratory frame, the dynamic parzmeter expresses conservation of
electron-ion momenta. In addition, there is an amplitude parameter
that expresses conservation of electromagnetic field~particle energy
density. These two parameters are functions of the plasma stream
velocity, the wave velocity, the wave amplitude and the electron-
ion mass ratio. We will conclude that the dynamic parameter must be
regarded as an.adjustable quantity, equivalent to an eigenvalue of
the system, a suitable choice of which will yield self-consistent
wave solutions when the value of the amplitude parameter and other
plasma parameters have been allocated.
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CONSERVATION RELATIONS IN THE LABORATORY FRAME

Consider a cold two-fluid electron-ion plasma. The laboratory
frame is chosen to be an arbitrary frame in which a traveling wave
propagates with a constant velocity c2/n [where ¢ = speed of light,
n = index of refracticn and 2 = (o,o,l)], the plasma moves with a
certain stream velocity Vs (where -c < Vg < c), and the solutions
depend on space and time coordinates only through the combination
8 = t -nz/c.

"The governing equations written in terms of the phase 6 are the
relativistic equations of motion

v x3
q v.oXx
d -+ a | a
- y £ = 2 &
(1 nvaz/c, a5 (Yavu) o E + . < .(¥)
the equations of continuity
@N.. 44 : ’ .
e " cas Mve 7O o (2)
and Maxwell's equations
n dEz .
- < aE * éﬂe(Ni‘* Ne). » - (3)
d8_ - . ’
g e | . , 4 .
i @
nz X E? =1 ‘ ' 'y (3)
-nz x 48 EE + 4re(N V. - N v ) . (6)
ds de ii e e ?

.
where Yo = (1 - va?/cz) % and a = (e,i).
Conditions describing the average particle number density and
flux can be obtained by taking the phase-average of Egs. (3) and

-

(6),.which gives : A ™

<N > = <N_$ . : ’ (7)

<N 3 > = <N,3,>- ’ . s (8)



e —————y

where the angular bracket denotes averaging over one period in 6.
In nonlinear theory, it is convenient to define the plasma stream
velocity as the ratio of the average particle flux to the average
number density(*TlS); it follows from Egs. (7) and (8) that the

electron and ion streaming velocities are equal C

- ->
> <N v > <Nivi>
e e _ }
Ve =N > <N.> : - (9)
e i
‘A stationary plasma corresponds to the particular case in which
e

<cha> = 0.

It is easy to show that'vs, as defined. by Eq. (9), Lorentz-
transforms like any velocity. Suppose there are two frumes S' and
S, where S has a velcoity Vz relative to S'. Then, the averaged
particle flux and number densities in two frames are related by

<N31> = <N'3L'> , {sz> = r(<N'vz'> - V<N'>) ;5 (10)
4 ' > ' [} 2 4
<N> = T'(<N'> - V<N v, >/e™) s (11)
g : 2, 2.-%
where + = (x,y) eand T = (1 —= v°/c") °. Note that phase averaging is
a Lorentz-invariant operation. Dividing Eq. (10) by Eq. (11) gives
. Vvl ' . Av;z -v '
v = S N Y = ‘ > (12)

st ra - v /eh) sz - yyr /et

sz’ .7 sz
which indeed satisfies the Lorentz transformation for velocities.
This suggests that if in S' the plasma has a cgrtain stream velocity
UL, then an cbserver in S that has a velocity V! relative to S' will
"see'' a stationary plasma with V = 0. Hence, the nonlinear disper-
sion relation for a streaming plasma can be obtained from the non-
linear dispersion relation for a stationary plasma by a Lorentz
transformation »15,1

The behavior of electron and ion number densities follows upon
integrating Eq. (2), giving

-9

> : (13)

*

N = N
a 1 -nov /e
az

where N = <N > (1 - nV__/c).
a sz



An integration of Eq. (5) gives
B=nzxE+ <B> | , - (14)

+ p } g > 3
where <B> denotes the magnetostatic field. 1In this paper an unmag-
netized plasma is considered so <B> = 0.

A conservation relation for electron and ion momenta can be ob-

tained from the transverse and longitudinal components of Eq. (1),
namely .

-> > > - .
u;, Fuu, =Dy . C - (15)

(u,, - nyy) +ul,, -ny) =D, - . (16)

> . .
where u = yw/c, ¥ =m /mi and D is a constant vector. Egqs. (15) and
(16) can be combined Into a single equation

-> - - >
ug + wu, - n(Yi + uYe)z =D . - (17)

: <> o, .
Thus, the dynamic parameter D expresses gonservation of electron-
ion momenta. In the absence of a wave, v, = Vs = VS; Eq. (17) be-
comes '

1+ A - vsz/cz)‘lf V- a0+ wa - vsz/_cz)'lfé =B, as)

vhich shows that D is a function of 3; n and py. It will be seen
later that for large wave'amﬁlituges D also depends on the wave ine
tensity. In linear theory, ¥, = Vg + vpu ( where $padenotes small
perturbations), Eq. (17) reduces to

>

V. +uv__ =0 ' ) Q19)
ip €p

, > . :
Hence, in this limit, D is still given by Eq. (18) because the aver-—
age values of the perturbed particle velocities are zero. '

An energy conservation relation gan be obtained as follows.
A scalar product of Eq. (1) with 3(1/(:2 gives

(<9

2 dye : eNé o ; ’ f.
me’ 4 =-—x E v, - s (20)
N
dy eN
. 2 3 - —* + .
m,c —a€£ = ——fE E - v, ' s ‘ (21)

- N




where Eq. (13) has been applied. Adding Eqs. (20) and (21), then
making use of Eqs. (5) and (6), it yields :

dy L dy, . S
2 e 2 i_ 1 4 ,.2 2
.S 3 + m.c” 35 T 3nN* T (E" +B") . (22)

An integration of Eq. (22) then yields a comservation relation for
the electromagnetic field-particle energy density

Ez + B2

* 2 * 2 x 2 ' -
+ Nmyc +Nm,y.c =Nme¢c . 23
8n ele i¥i Y e ? 4 (23)
where W is a scalar constant. The energy constant W can be consid-
ered an amplitude parameter that characterizes the magnitude of wave
intensity, as will be shown later. ' In the absence of a wave, Eq. (23)
reduces to ’

W= (1+1/w) (1 - vsz/cz)‘.xi . ‘ (24)

W must exceed the above value for a wave solution to exist.

.CIRCULARLY POLARIZED ELECTROMAGNETIC WAVES

Purely transverse, circularly polarized electromagnetic wave$§
have been studied extensively (see e.g. Ref. 1, 17-19). For the case
of an ummagnetized electrodn-ion plasma streaming in the wave direc-
tion, the dispersion relation in the laboratory frame is

.- 4 .
, T ou’ o b - et
QY+ v5) (L + g v w

where w c2 = Lm<Nc>e2/mOl and v = eEp,/m_ wc is an invariant parameter
that measures the wave amplitude. Eq. (85) relates the wave velocity,
the plasma stream velocity, the electron-ion mass ratio and the

wave amplitude. The aim of -this paper is to demonstrate that similar
' dispersion relations for other. strong waves can also be obtained
through a proper treatment of the conservation parameters W-and D.

ELECTROSTATIC PLASMA WAVES

As an illustration, consider the case of electrostatic plasma
N . ->
waves. For longitudinal waves, ug = (0,0,uy) and the two conser-
vation relations Eqs. (17) and (23) reduce, respectively, to



(ui - DYi) + u(ue - nYe) =D ’ (26)

] due 2 _-W =Y, - Yi/u ‘ . ”

2\ | T Y 4 ’ (27
a - nu Ye)

where 12 = wvezezkl - aV./c). Evidently, Eq. (27) indicates that an

oscillatory solution exists, with a period of oscillation given by
92

/2 1 - Due/Ye

due‘ bd (28)

P = :
: w _ 2
pe . W -, Yi/u)

1

where the turning points u,,, are determined by the equation

1°2,
Ye T Yi/p = W. Note that y; is related to u, and Ye through Eq.
(26). The general dispersion relation (28) recovers the electron
plasma result 12) if the ion term Yi/u is ignored.

Before discussing the general solutions of Eq. (28), consider

first the phenomenon of wavebreaking which may occur for subluminous

waves and is relevant to the laser-plasma interaction(3). A condi-
tion for the occurrence of wavebreaking in the laboratory frame can
be obtained as follows. First notice from Eq. (13) that, for a
stationary plasma, a traveling wave sclution exists (i.e. O<Nj<«)
only if the condition

Ve <e/m ‘ : (29)

is satisfiied. Upon transformfggon from the stationary plasma case
to the streaming plasma casel the condition (29) then becomes

v < Vu'< c/n if V < c¢/n
N ' s , (30).
c/la<v <v if vV > c/n
a c s
where
2, 2 . : ’
v 1 +V %/c” - 20V /e &,
_c _ s s
c

’ 2, 2
2Vs/c - n(l + V§ /e™)

Hence, for subluminous longitudinal waves, the electron and ion
velocities are subject to the conditions (29) and (30), whose
violation implies the occurrence of wavebreaking. A graphical dis-
play of Eq. (30) in Fig. 1 shows that, for a given wave velocity,
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Figure 1. Variation of vc/c_aﬁd 1/n with normalized wave velocity
for Vg/ec = 0.5. Shaded region indicates wavebreaking.

the range of va/c_permitted for traveling wave solutions is bounded
by the 1l/n’curve and the‘vc/c curve. The shaded region represents
the domain in which wavebreaking takes place. :

The problem of wavebreaking can further be clarified by examin-
ing the comservation relations in the wave frame, for which there is
no time dependence. In the wave frame, the governing eqﬁg}ions be-

come
- d _ 9 .
Yo 3 e) Ta P ' )
o .
Nv + N.v. = NV_ = constant ’ (32)
e e ii o o0

-\E-r-.-rﬁ---»w._'-~- —r— ., ———— e



dE ‘
S = bme(N, - N) ) - (33)

The above syst?m'gf'equations can be combined to give two conserva-
tion relations '

2 2 : _
m,Y,C + mye = mecle s (34)

E ' :
NovomeYev + NoVomJ.Yl i 87 . Novomec_wl ¢ (35)

Eq. (34) cgrresponds to Eq. (26) in the laboratory frame with Dy =
- (1 - 1/n%)~ %p/n. Therefore, the dynamic paramete: expresses

0.95
-374.8

D,/ (14 L) 115

e e —— —

bt e o — — —— —

-3735.2

Figure 2. Variation of f with y, for Dj = 1.021 -( = equilibrium
value of“Dl, n=25, u=1/1837, Vs = 0).



conservation of electron-ion energy in the wave frame. Eq. (35)
corresponds to Eq. (27) in the laboratory frame and can be rewritten

'~ as
1 dYe ? ’ :
2 ETFF- =W - f(Ye) . » ? (36)
with , . '
Vo2 %1 _n 82 % '
| fly) =-("-D " [y, - D)) 1] , , (37)
, . . _ .
where 1| = pre1(|Vo|/C3)1’ Wpel = éﬁNoez/me and W, = -(1 - 1/n2)%w.

Hence, the amplitude parameter expresses conservation of electro-
magnetic field-particle momentum density in the wave frame. A
typical plot of f as a function of v, is displayed in Fig. 2,

1 —

V,/c=0

0.8

06
w/wy,

04

0.2

099

: 1 ‘ — i 1
%505 1 15 2

V./C

a

Figure 3. Variation of w/wp with va/c for indicated values of
Vg/c; n = 0. : : .
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which shows that oscillatory solutions exist only if Wl lies in the
interval

W, <W<W (38)
mln max

1 2 1
where Wy . = —[Dlz - (1 + u)z]i/u and W, = [ - Dl) - 1]1/u.

It is easy to see from Fig. 2 that wavebreaking occurs if W; exceeds
Wpax. Furthermore, it shows that Wj determines the amplitude of the

wave oscillations.

The general properties of electrostatic plasma waves in’ the
laboratory frame can be computed from Eq. (28). Wren evaluating a
particular solution it is necessary to decide what values should be
assigned to the two conservation parameters W and D. Our wave frame
analysis indicates that W can be considered as an amplitude para-
meter. To obtain a specific solution with given plasma stream velo-
city, wave velocity, the electron-icn mass ratio and the wave ampli-
tude, the dynamic parameter D must be adjusted accordingly so as to
render self-consistency to the solution, Fig. 3 shows the variation
of the cut-off frequency w/w_  (where wy® = w e2 + w iZ and n = 0)
with vo/c {where v, = [vl - v2], vy, being the turning points of v,
oscillations) for different values of plasma stream velocity. The
computations are carried out for a hydrogen plasma (w = 1/1837).

In Fig. 4, the variation of the self-consistent dynamic parameter D’
with u, (where ug = lul - u2|) for a stationary plasma is displayed
for different values of n. 1t confirms that the dynamic parameter
is a function of wave amplitude. Note that for small wave ampli-

tudes, D stays very close to-the value given by Eq. (18).

CONSERVATION RELATIONS IN THE SPACE-INDEPENDENT FRAME

For superluminous electromagnetic waves the analysis can be
simplified by referring to the space-independent frame which has a
velocity ncz with respect to the laboratory frame. The basic equa-
tions in this frame are

> .
d(y v.) gq o
a o’ _ laxl .
o =—E . o (39
- , .
o,
N = N. =N = ¢onstant : ’ (40)
e i :
. .
B = constant = 0 , , (41)
dE |
-+ +
E"r- + IHTI\Q(Vi -V ) = 0 . . (&2)

e

The above syéiéﬁ'of equations can be combined to yield two conser=

11
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Figure 4. Variation of D with u, for indicated values of n;

v = 0.
s
vation relations(;s)
> > . =S 4 ‘
BeYeVe T ®3ViV4 T II-lec‘D2 7 (43)
Ez + Nm c2 + Nm c2 = Nm CZW. (44)
8 e¥e® T PV "eC "2 . SR

Eq. (43) corresponds to Eq. (17) in the laboratory frame. Upon
transforming to the laboratory frame, the transverse components of
Eq. (43) gives Eq. (15) with D,, = D,, while the lcngltudlnal compo-
nent of Eq. (43) gives Eq. (16) with Do, = (1 - n )"D Hence the
dynamic parameter expresses conservation of electron—lon momentum in
the space-independent frame. Eq. (44) corresponds to Eq. (25) in
the laboratory frame and can be rewritten as

>4 2.
11 e -
2 dTZ + Ye + Yi/u — W ’ (45)

-
[$8]

1 e e g



' .
where 19 = wpezt’ “gez = AHNeZ/me and Wy = (1 - nz)iw. Therefore,
the amplitude parameter expresses conservation of electromagnetic
field-particle energy density in the space-independent frame. For
the special case'bf'ﬁg = Dyz, Wy must exceed [Dz2 + (1 + )21%u for
a solution to exist(18) .  An elegant formulation of the energy- -
momentum conservation relations in terms of the Maxwell's stress
tensor in the space-independent frame can be found -in Ref. 2l.

The two energy-momentum relations (43) and (45) can be used to
study all possible wave solutions. As in the case of electrostatic
lasma oscillations, a proper handling .of the conservation comstants,
%2 and Wy, is essential for obtaining self-consistent solutioms.

‘The case of circularly polarized electromagnetic waves serves
to demonstrate the correct behavior of the two conservation con-
stants. For simplicity,+consider the plasma to be statiomary in the
laboratory frame (i.e., Vg = 0). For circularly polarized wavesézyé
and y4 are constants given, in the space-independent frame, by 1

1
1 + uzvz 2

2\ 4

1 + v _ . ;

e 2 > Y3 T 2 (46)
1 -n . 1 -.n .

Y

/m_we as defined. in Eq. (25). Substitution of Eq.

where v = eF .«
(4%) and (45), respectively, yields

(46) into qu.

2. =L | 5 o )
B, = -n(1 - nH7THA +uHDTwa + DI, @D
- 1 : 1
W, = w22+ (1 - 0D7E[1 + DT+ + D] . (48)
' > | L 2 2 . - .
Note that Dpy: = O and (due/drz) = v° for circularly polarized waves.

Eas. (47) and (48) show clearly that the energy-momentum conservation
parameters are functions of the wave velocity, the wave amplitude and
the electron-ion mass ratio. In addition, from Egs. (47) and (48)
one obtains the following relation

> 2_’~ -, '
D2 = pn(v /2 - &2)2 . (49)

which shows explicitly that for a given amplitude parameter W, there
is only one value of the dynamic parameter D, that satisfies self- .
consistent solutions.

CONCLUSION

It has been shown that the equations governing the propagation
of relativistic electromagnetic waves in an electron-ion plasma can

T Ty T TS Sy TR TTWA T T e Tyl - maye e wSicpeerip s sceme JC
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be reduced to two energy-momentum conservation relations. The two
conservation constants, the amplitude parameter and the dynamic
parameter, respectively, are functions of the plasma stream velocity,
the wave velocity, the electron-ion mass ratio and the wave in-
tensity. In order to obtain self-consistent solutions the.dynamic
parameter must be chosen appropriately when other parameters have
been specified.
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