14 research outputs found

    Global 30-day outcomes after bariatric surgery during the COVID-19 pandemic (GENEVA): an international cohort study

    Get PDF

    30-Day morbidity and mortality of bariatric metabolic surgery in adolescence during the COVID-19 pandemic – The GENEVA study

    Get PDF
    Background: Metabolic and bariatric surgery (MBS) is an effective treatment for adolescents with severe obesity. Objectives: This study examined the safety of MBS in adolescents during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This was a global, multicentre and observational cohort study of MBS performed between May 01, 2020, and October 10,2020, in 68 centres from 24 countries. Data collection included in-hospital and 30-day COVID-19 and surgery-specific morbidity/mortality. Results: One hundred and seventy adolescent patients (mean age: 17.75 ± 1.30 years), mostly females (n = 122, 71.8%), underwent MBS during the study period. The mean pre-operative weight and body mass index were 122.16 ± 15.92 kg and 43.7 ± 7.11 kg/m2, respectively. Although majority of patients had pre-operative testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (n = 146; 85.9%), only 42.4% (n = 72) of the patients were asked to self-isolate pre-operatively. Two patients developed symptomatic SARS-CoV-2 infection post-operatively (1.2%). The overall complication rate was 5.3% (n = 9). There was no mortality in this cohort. Conclusions: MBS in adolescents with obesity is safe during the COVID-19 pandemic when performed within the context of local precautionary procedures (such as pre-operative testing). The 30-day morbidity rates were similar to those reported pre-pandemic. These data will help facilitate the safe re-introduction of MBS services for this group of patients

    30-day morbidity and mortality of sleeve gastrectomy, Roux-en-Y gastric bypass and one anastomosis gastric bypass: a propensity score-matched analysis of the GENEVA data

    Get PDF
    Background: There is a paucity of data comparing 30-day morbidity and mortality of sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). This study aimed to compare the 30-day safety of SG, RYGB, and OAGB in propensity score-matched cohorts. Materials and methods: This analysis utilised data collected from the GENEVA study which was a multicentre observational cohort study of bariatric and metabolic surgery (BMS) in 185 centres across 42 countries between 01/05/2022 and 31/10/2020 during the Coronavirus Disease-2019 (COVID-19) pandemic. 30-day complications were categorised according to the Clavien–Dindo classification. Patients receiving SG, RYGB, or OAGB were propensity-matched according to baseline characteristics and 30-day complications were compared between groups. Results: In total, 6770 patients (SG 3983; OAGB 702; RYGB 2085) were included in this analysis. Prior to matching, RYGB was associated with highest 30-day complication rate (SG 5.8%; OAGB 7.5%; RYGB 8.0% (p = 0.006)). On multivariate regression modelling, Insulin-dependent type 2 diabetes mellitus and hypercholesterolaemia were associated with increased 30-day complications. Being a non-smoker was associated with reduced complication rates. When compared to SG as a reference category, RYGB, but not OAGB, was associated with an increased rate of 30-day complications. A total of 702 pairs of SG and OAGB were propensity score-matched. The complication rate in the SG group was 7.3% (n = 51) as compared to 7.5% (n = 53) in the OAGB group (p = 0.68). Similarly, 2085 pairs of SG and RYGB were propensity score-matched. The complication rate in the SG group was 6.1% (n = 127) as compared to 7.9% (n = 166) in the RYGB group (p = 0.09). And, 702 pairs of OAGB and RYGB were matched. The complication rate in both groups was the same at 7.5 % (n = 53; p = 0.07). Conclusions: This global study found no significant difference in the 30-day morbidity and mortality of SG, RYGB, and OAGB in propensity score-matched cohorts

    Evaluation of ELISA and immunoaffinity fluorometric analytical tools of four mycotoxins in various food categories

    No full text
    Abstract Mycotoxins (MTs) are secondary toxic metabolites that can contaminate food, impacting quality and safety, leading to various negative health effects and serious pathological consequences conferring urgent need to evaluate and validate the currently standard methods used in their analysis. Therefore, this study was aimed to validate ELISA and VICAM immunoaffinity fluorometric, the two common methods used to monitor the level of MTs according to the Egyptian Organization for Standardization and Quality Control. A total of 246 food samples were collected and tested for Aflatoxins (196 samples), Ochratoxin A (139), Zearalenone (70), and Deoxynivalenol (100) using both analytical methods. Results showed that aflatoxins exceeded limits in 42.9, 100, and 13.3% of oily seeds, dried fruits, and chili and spices, respectively. For ochratoxin A, 3.9% of Gramineae and 8% of spices and chili (locally sourced) exceeded the limits, while 17.6% of imported pasta and noodles exceeded the limits for deoxynivalenol. Significant differences for the aflatoxins and ochratoxin A detection among different categories of chocolate, dried fruits, and oily seeds (p-value  0.05). In conclusion, our study found no significant differences between the ELISA and immunoaffinity fluorometric analysis in the detection of the respective MTs in various food categories and therefore, they can substitute each other whenever necessary. However, significant differences were observed among different food categories, particularly the local and imported ones, highlighting the urgent need for strict and appropriate control measures to minimize the risk of MTs adverse effects

    Metagenomic nanopore sequencing versus conventional diagnosis for identification of the dieback pathogens of mango trees

    No full text
    Dieback is one of the most dangerous fungal diseases affecting mango trees. In this study, nanopore metagenome sequencing of the root-soil samples and infected plant tissues was conducted to identify the fungal pathogens present. Soil analysis of the infected mango trees showed the abundance of the Dikarya subkingdom (59%) including Lasiodiplodia theobromae (15%), Alternaria alternata (6%), Ceratocystis huliohia and Colletotrichum gloeosporioides. Analysis of the infected plant tissues revealed the presence of A. alternata (34%). The data were deposited in the National Center of Biotechnology Information (PRJNA767267). In conclusion, nanopore metagenome sequencing analysis was a valuable tool to rapidly identify dieback-associated fungal pathogens

    Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin-1 and Their Association among Bacteremic and Infective Endocarditis Patients in Egypt

    No full text
    Purpose. Infective endocarditis (IE) is a major complication in patients with bacteremia of Staphylococcus (S.) aureus infection. Our aim was to determine the association of the major Staphylococcal superantigens (SAgs), including Staphylococcal enterotoxins (SEs) and toxic shock syndrome toxin-1 (TSST-1), among hospitalized patients diagnosed with bacteremia and those with IE. Methods. This study was conducted on 88 patients; of these, 84 (95.5%) had two positive blood cultures. Eighteen out of the 84 patients (21.4%) were diagnosed based on the modified Duke criteria by a cardiologist to have IE. The recovered isolates were screened phenotypically using ELISA followed by molecular analysis of sea, seb, sec, sed, see, and tsst-1, the major SAg coding genes, and the obtained findings were statistically analyzed. Results. Phenotypic screening for SE production of 26 selected Staphylococci (15 isolated from the IE patients (10 S. aureus and 5 coagulase negative staphylococci (CoNS)) and 11 from bacteremic patients (10 S. aureus and 1 CoNS)) using ELISA revealed that 12/26 (46%) isolates were SE producers. PCR analysis showed that 19 (73%) isolates were PCR positive for SAg genes with the highest prevalence of the sea gene (79%), followed by seb (63%) and tsst-1 (21%). The least frequent gene was sed (5.3%). Statistical correlations between bacteremic and IE isolates with respect to prevalence of SAgs showed no significant difference (P value = 0.139, effect size=0.572) indicating no specific association between any of the detected SAgs and IE. Conclusion. There is high prevalence of SEs among clinical isolates of Staphylococci recovered from patients suffering bacteremia and those with IE. No significant difference was found among Staphylococcal isolates recovered from patients with bacteremia or IE regarding both phenotypic and genotypic detection of the tested SAgs

    Phytoestrogen <i>β</i>-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses

    No full text
    Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds β-sitosterol and β-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status “viricidal effect”. On a molecular level, several molecular docking studies suggested that β-sitosterol and β-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen β-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen β-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of β-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates

    Supplementary material: Metagenomic nanopore sequencing versus conventional diagnosis for identification of the dieback pathogens of mango trees.docx

    No full text
           Supplemental   Material Figure S1. Features of Dieback Disease observed   in mango trees, A: the shape of the leaf in the early stage of infection, B:   the shape of the leaf in an advanced stage of infection, C, D: symptoms in   the fruit itself Figure   S2. A: Longitudinal section of stem showing vascular tissues in a   healthy tree, B: Longitudinal section   of stem showing brown vascular tissues of dieback diseased tree, C: a picture   of dieback disease in an infected tree. Figure   S3. Mycelial fungal growth on PDA of the recovered fungi from root   soil. A; Fungal isolate-1; B, Fungal isolate-2. Figure S4. Nanopore metagenomic sequence   analysis wheel showing the percentage of Ceratocystis huliohia and Colletotrichum   gloeosporioides present in the sample, but were underrepresented Figure S5. Nanopore metagenomic sequence   analysis wheel showing the 30% of reads classified as bacteria with different   types such as E. coli, Sinorhizobium, Bradyrhizobium and   Rhodoplanes Figure S6. Nanopore metagenomic sequence   analysis wheel showing different species from Pseudomonas such as Pseudomonas stutzeri, Pseudomonas syringae,   and Pseudomonas qingdaonensis Figure S7. Nanopore metagenomic sequence   analysis wheel showing 37 species from actinomycetes group including,  Micrococcales, Micromonosporaceae,   Streptomycetaceae, Pseudonocardiaceae and Propionibacteriales Figure   S8. Nanopore metagenomic sequence analysis wheel of the control   root-soil sample the percentage of bacteria (55%), Archaea (0.3%), Fungi   (0.1%)    Figure   S9. Nanopore metagenomic sequence analysis wheel of a control soil   sample, 100% were of the Dikarya subkingdom including, Ascomycota   (87%), and Basidomycota (13%).        Figure S10.   Nanopore metagenomic sequence analysis bacteria wheel of a control soil   sample showing Proteobacteria (50%), Terrabacteria (33%), PVC   bacterial group (3%) and others.    Table   S1. The parameters used for the statistical Data   analysis of NMS of the detected microbiota of the collected soil samples from   the diseased trees.        Table S2. The parameters used for the statistical Data analysis of NMS of the detected potential pathogens of the dieback   disease of the collected soil samples from the diseased trees. </p
    corecore