17 research outputs found

    Am. J. Med. Genet.

    No full text
    Zimmermann-Laband syndrome (ZLS) is a rare autosomal dominant inherited disorder characterized by a coarse facial appearance, gingival fibromatosis, and absence or hypoplasia of the terminal phalanges and nails of hands and feet. Additional, more variable features include hyperextensibility of joints, hepatosplenomegaly, mild hirsutism, and mental retardation. Mapping of the translocation breakpoints of t(3;8) and t(3;17) found in patients with the typical clinical features of ZLS defined a common breakpoint region of 280 kb located in 3p14.3, which includes the genes CACNA2D3 and WNT5A. Breakpoint cloning revealed that both translocations most likely occurred by non-homologous (illegitimate) recombination. Mutation analysis of nine genes located in 3p21.1-p14.3, including CACNA2D3, which is directly disrupted by one breakpoint of the t(3;17), identified no pathogenic mutation in eight sporadic patients with ZLS. Southern hybridization analysis and multiplex ligation-dependent probe amplification (MLPA) did not detect submicroscopic deletion or duplication in either CACNA2D3 or WNT5A in ZLS-affected individuals. Mutation analysis of nine conserved nongenic sequence elements (CNEs) in 3p21.1-p14.3, which were identified by interspecies comparison and may represent putative regulatory elements for spatiotemporally correct expression of nearby genes, did not show any sequence alteration associated with ZLS. Taken together, the lack of a specific coding-sequence lesion in the common region, defined by two translocation breakpoints, in sporadic patients with ZLS and an apparently normal karyotype suggests that either some other type of genetic defect in this vicinity or an alteration elsewhere in the genome could be responsible for ZLS. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/1552-4825/suppmat/index.html

    Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome and WNT7A mutations: genetic homogeneity and nosological delineation.

    No full text
    The Al-Awadi-Raas-Rothschild syndrome (AARRS; OMIM 276820) and the Fuhrmann syndrome (FS; OMIM 228930) are distinct limb malformation disorders comprising different degrees of limb aplasia or hypoplasia. In 2006, Woods et al. found different recessive WNT7A mutations in one family segregating the AARRS phenotype and in a second family with FS. To explain the common genetic basis for the two clinically distinct disorders, functional studies were done showing that partial loss of WNT7A function resulted in FS, while complete loss of WNT7A function resulted in the more severe phenotype of AARRS. In spite of the elucidation of the molecular basis of AARRS, there remains to this day considerable diagnostic confusion that has culminated in the lumping of Schinzel phocomelia syndrome with AARRS; however, this phocomelic limb defect is quite different in its clinical aspect and pathogenesis from the limb findings of AARRS. Here, we report on a child with the AARRS phenotype and homozygosity for a non-conservative E72K mutation in WNT7A, underline the homogeneity of the WNT7A-associated AARRS phenotype, and propose differential diagnostic criteria for the AARRS reflecting the roles of WNT7A in limb development
    corecore