708 research outputs found

    Systematic review of brucellosis in the Middle East: disease frequency in ruminants and humans and risk factors for human infection

    Get PDF
    This paper considers the problem of finding global states incoming to a specified global state in a Boolean network, which may be useful for pre-processing of finding a sequence of control actions for a Boolean network and for identifying the basin of attraction for a given attractor, We show that this problem is NP-hard in general along with related theoretical results, On the other hand, we present algorithms that are much faster than the naive exhaustive search-based algorithm. ©2007 IEEE.link_to_subscribed_fulltex

    Characteristics and oil sorption effectiveness of kapok fiber, sugarcane bagasse and rice husks: Oil removal suitability matrix

    Get PDF
    The characteristics and water/oil sorption effectiveness of kapok fiber, sugarcane bagasse and rice husks have been compared. The three biomass types are subjected to field-emission scanning electron microscopy-energy dispersive x-ray spectroscopy while the surface tension analyses for liquid-air and oil-water systems have also been conducted. Both kapok fiber and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils since all their oil sorption capacities exceed 10 g/g. Synthetic sorbent exhibits oil sorption capacities comparable to sugarcane bagasse while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fiber shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76 to 2.69). This suggests that kapok fiber is a highly-effectual oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix has been proposed to aid relevant stakeholders for evaluation of customized oil removal usage of the natural sorbents

    Measuring the condensate fraction of rapidly rotating trapped boson systems: off-diagonal order from the density

    Full text link
    We demonstrate a direct connection between the density profile of a system of ultra-cold trapped bosonic particles in the rapid-rotation limit and its condensate fraction. This connection can be used to probe the crossover from condensed vortex-lattice states to uncondensed quantum fluid states that occurs in rapidly rotating boson systems as the particle density decreases or the rotation frequency increases. We illustrate our proposal with a series of examples, including ones based on models of realistic finite trap systems, and comment on its application to freely expanding boson density profile measurements.Comment: 4 pages, 3 figures, version accepted for publication in Phys. Rev. Let

    Tuberculous meningitis in children: reducing the burden of death and disability

    Get PDF
    Tuberculous meningitis disproportionately affects young children. As the most devastating form of tuberculosis, it is associated with unacceptably high rates of mortality and morbidity even if treated. Challenging to diagnose and treat, tuberculous meningitis commonly causes long-term neurodisability in those who do survive. There remains an urgent need for strengthened surveillance, improved rapid diagnostics technology, optimised anti-tuberculosis drug therapy, investigation of new host-directed therapy, and further research on long-term functional and neurodevelopmental outcomes to allow targeted intervention. This review focuses on the neglected field of paediatric tuberculous meningitis and bridges current clinical gaps with research questions to improve outcomes from this crippling disease

    Dose-escalated salvage radiotherapy after radical prostatectomy in high risk prostate cancer patients without hormone therapy: outcome, prognostic factors and late toxicity

    Get PDF
    Purpose: Evaluation of dose escalated salvage radiotherapy (SRT) in patients after radical prostatectomy (RP) who had never received antihormonal therapy. To investigate prognostic factors of the outcome of SRT and to analyze which patient subsets benefit most from dose escalation. Materials and methods: Between 2002 and 2008, 76 patients were treated in three different dose-groups: an earlier cohort treated with 66 Gy irrespective of pre-RT-characteristics and two later cohorts treated with 70 Gy or 75 Gy depending on pre-RT-characteristics. Biochemical-relapse-free-survival (bRFS), clinical-relapse-free-survival (cRFS) and late toxicity were evaluated. Results: Four-year bRFS and cRFS were 62.5% and 85%. Gleason score <8, positive surgical resection margin (PSRM) and low PSA (<= 0.5 ng/ml) before SRT resulted in higher bRFS. Analysis of the whole group showed no clear dose-outcome relationship. Patients with PSRM, however, had improved bRFS when escalating >66 Gy. While >70 Gy did not improve the overall results, 4-year bRFS for patients with manifest local recurrence in the high-dose group was still comparable to those without manifest local recurrences. No grade 4 and minimal grade 3 gastrointestinal and urinary toxicity were observed. Conclusions: Dose-escalated SRT achieves high biochemical control. The data strongly support the application of at least 70 Gy rather than 66 Gy. They do not prove positive effects of doses >70 Gy but do not disprove them as these doses were only applied to an unfavorable patients selection

    Excitation spectrum of vortex lattices in rotating Bose-Einstein condensates

    Full text link
    Using the coarse grain averaged hydrodynamic approach, we calculate the excitation spectrum of vortex lattices sustained in rotating Bose-Einstein condensates. The spectrum gives the frequencies of the common-mode longitudinal waves in the hydrodynamic regime, including those of the higher-order compressional modes. Reasonable agreement with the measurements taken in a recent JILA experiment is found, suggesting that one of the longitudinal modes reported in the experiment is likely to be the n=2n=2, m=0m=0 mode.Comment: 2 figures. Submitted to Physical Review A. v2 contains more references. No change in the main resul

    Direct observation of the phonon energy in a Bose-Einstein condensate by tomographic imaging

    Full text link
    The momentum and energy of phonons in a Bose-Einstein condensate are measured directly from a time-of-flight image by computerized tomography. We find that the same atoms that carry the momentum of the excitation also carry the excitation energy. The measured energy is in agreement with the Bogoliubov spectrum. Hydrodynamic simulations are performed which confirm our observation.Comment: Letter, 5 figure

    Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    Get PDF
    One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (<i>f</i>RH<sub>ext</sub>(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. <br><br> We found a weak linear dependence or no dependence of <i>f</i>RH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption needs to be taken with caution as the imaginary part of the complex RI can be underestimated

    Critical rotation of a harmonically trapped Bose gas

    Full text link
    We study experimentally and theoretically a cold trapped Bose gas under critical rotation, i.e. with a rotation frequency close to the frequency of the radial confinement. We identify two regimes: the regime of explosion where the cloud expands to infinity in one direction, and the regime where the condensate spirals out of the trap as a rigid body. The former is realized for a dilute cloud, and the latter for a Bose-Einstein condensate with the interparticle interaction exceeding a critical value. This constitutes a novel system in which repulsive interactions help in maintaining particles together.Comment: 4 pages, 4 figures, submitted to PR
    corecore