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Abstract: Tuberculous meningitis disproportionately affects young children. As the most devastating
form of tuberculosis, it is associated with unacceptably high rates of mortality and morbidity even
if treated. Challenging to diagnose and treat, tuberculous meningitis commonly causes long-term
neurodisability in those who do survive. There remains an urgent need for strengthened surveillance,
improved rapid diagnostics technology, optimised anti-tuberculosis drug therapy, investigation of
new host-directed therapy, and further research on long-term functional and neurodevelopmental
outcomes to allow targeted intervention. This review focuses on the neglected field of paediatric
tuberculous meningitis and bridges current clinical gaps with research questions to improve outcomes
from this crippling disease.

Keywords: tuberculous meningitis; TBM; disseminated; central nervous system

1. Introduction

Young children and individuals living with HIV are at high risk of progressing to
tuberculosis (TB) disease following TB infection and are at elevated risk of progressing to
severe forms of disease such as disseminated TB and tuberculous meningitis (TBM) [1].
TBM is the most devastating form of TB and is associated with high mortality and morbidity.
Untreated, all children will die [2]. Even if diagnosed and treated, 20% of children die and of
those surviving over half have neurological disability [3]. TBM in children, therefore, merits
special consideration. In this article we review the natural history and pathogenesis of TBM
in children, the epidemiology of the disease, approaches to diagnosis, developments in
treatment and considerations for long-term prognosis. We present recent research findings
and areas that require prioritised future investigation (Table 1).
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Table 1. Current knowledge and research gaps for childhood tuberculous meningitis.

Research Area Current Knowledge Research Gaps

Pathogenesis

• Novel biomarker and host genotype studies offer new insight into
TBM pathophysiology

• Young age is a major determinant of progression from TB infection to TBM
• BCG vaccination and TB preventive therapy for children exposed to TB cases

are important preventative strategies

• Further understanding of the mechanism of TB dissemination from lungs to
CSF and CSF invasion

• Further understanding of host and pathogen factors that determine why some
children develop TBM

Epidemiology

• More than half of all children with TB globally are undiagnosed or unreported
• Infants have an up to 20% risk of developing TBM following TB infection
• Advanced disease stage at diagnosis is associated with high mortality

and morbidity

• The number of children with TBM are currently unknown, and modelling
studies are needed to provide estimates of the burden, morbidity, and mortality
in children globally

• Operational research can help to identify and mitigate the impact of drivers
behind diagnostic delays and missed opportunities for prevention

• Improve mechanisms for reporting of TBM in all age groups to national TB
surveillance programs

Diagnostics

• TBM can be diagnosed with reasonable confidence with clinical, laboratory, and
neuroimaging findings

• MRI is superior to CT imaging for children being evaluated for TBM, both from
a diagnostic perspective but also to delineate pathological and
prognostic features

• M. tuberculosis detection remains the ‘gold standard’ diagnostic test but is
limited by poor sensitivity

• Biomarkers have potential to improve our ability to discriminate children with
TBM from children with other causes for their symptoms and signs

• Establish validated clinical case definitions in adults and children taking into
account different settings stages of TBM and HIV-status

• Investigate the ability of MRI CSF flow imaging and thin slice CT to
differentiate communicating and non-communicating hydrocephalus

• Investigate utility of other modalities (e.g., 18F-PET/CT) to identify early small
infarctions missed with conventional imaging

• Develop new adequately sensitive, accessible, and rapid diagnostic tests,
especially at point of care to allow prompt diagnosis

• Further investigate the role of non- or less invasive TB testing (e.g., serum,
urine, or saliva) in diagnosing TBM in patients where CSF is difficult or cannot
be obtained

• Further investigate the utility of new omic technology, transcriptional and
metabolomic biomarkers in diagnosing TBM from other non-TBM CNS
infections, including in various populations, stages of TBM, and HIV-status
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Table 1. Cont.

Research Area Current Knowledge Research Gaps

Treatment

• Current recommended doses of TB drugs to treat TBM do not reach optimal
CSF levels

• Higher doses of rifampicin are required to penetrate the blood CSF barrier
• High CSF concentrations of isoniazid are associated with improved survival
• To date, the only adjuvant therapy proven to reduce mortality in TBM is

corticosteroids for up to 8 weeks
• Neurocritical care in severe or complicated disease should be part of routine

management of TBM

• What is the optimal dose, drug regimen, and duration of TB drugs to adequately
treat TBM? Is shortened therapy non-inferior to the standard 12 months?

• Should patients who are fast acetylators receive different doses of isoniazid
than slow acetylators?

• Besides rifampicin, isoniazid, and pyrazinamide, which first or second-line TB
drug is the most optimal 4th drug in a drug-susceptible TBM regimen?

• When is the optimal time to start TB treatment in HIV-positive children?
• Do the new second line TB drugs (bedaquiline, delamanid, and pretomanid)

have a role in treating drug-resistant TBM?
• Can new host-direct therapy (e.g., high-dose aspirin, thalidomide, and

monoclonal-antibodies such as TNF-alpha inhibitors) reduce mortality or
neurodisability in children with TBM?

• What is the optimal management for CNS complications in TBM? (e.g.,
hydrocephalus, tuberculomas, and paradoxical reactions)

• What is the optimal supportive and critical care in low-resourced settings to
improve mortality and morbidity?

Long term
morbidity

• Morbidity and mortality from TBM remain unacceptably high, even if treated
• Reasons for poor outcome are multifactorial; however, the most important

predictor of poor outcome is diagnostic and treatment delay
• Although the array of long-term sequelae is broad, the most common long-term

outcomes are physical and developmental disability
• Neurocognitive deficits can occur without physical disability and have

important psychosocial and educational consequences for children, especially
those with immature brains

• Establish validated and culturally appropriate tools to assess
neurodevelopment and function in children with TBM

• Standardisation of patient follow up and strengthened surveillance to include
physical, neurocognitive, and neurodevelopmental assessments

• Evaluation of whether optimised anti-TB therapy and host-directed therapy
could improve long-term neurodevelopmental and neurocognitive outcomes
across various paediatric age ranges

• Evaluation and characterisation of early intervention and targeted
neurorehabilitation services to improve long-term outcomes

TBM: tuberculous meningitis; TB: tuberculosis; BCG: bacille Calmette–Guérin; CSF: cerebrospinal fluid; MRI: magnetic resonance imaging; CT: computerised tomography; PET: positron
emissions tomography; CNS: central nervous system; TNF: tumour necrosis factor.
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2. Natural History and Pathogenesis

After inhalation of M. tuberculosis-containing droplets, bacilli may deposit into the
terminal alveoli. If they overcome the structural defences and innate immune response,
an inflammatory process involving cytokine release, granuloma formation, and primary
infection will ensue in the lungs. During this process a bacteraemia can occur where bacilli
are filtered into draining lymph nodes and then onto the systemic circulation and distant
sites, including the central nervous system (CNS) [4]. M. tuberculosis may then invade the
blood brain barrier via (1) rearrangement of actin; (2) M. tuberculosis virulence factor(s)
interacting with extracellular brain endothelium factors to facilitate bacillary endothelial ad-
hesion; or (3) the ‘Trojan horse’ mechanism via infected macrophages and neutrophils [5–8].
Once bacilli have gained access to the brain, a subcortical or meningeal ‘Rich focus’ is
formed via activation of microglial cells and astrocytes [9,10]. When this Rich focus is
activated (rapidly in the context of miliary TB, as demonstrated in young children [10], or
months to years later), M. tuberculosis is released into the subarachnoid space triggering
a T-cell mediated inflammatory cascade including induction of pro- and anti-inflammatory
cytokines such as tumour necrosis factor-alpha, interferon-gamma, interleukin (IL) 1b, IL-6,
IL-8, and IL-10 [4]. The consequent formation of exudate envelopes arteries and nerves,
disrupting cerebrospinal fluid (CSF) flow and contributing to development of vasculitis in
the vessels of the Circle of Willis, the vertebrobasilar system, and the perforating branches
of the middle cerebral artery. Resultant hydrocephalus and infarct contribute to the clinical
presentation in TBM [11].

Whether the mycobacteria are contained or cause clinical disease, and the extent of
clinical disease, is determined by an interplay of host immune response and M. tuberculo-
sis virulence factors, however our understanding of these processes remains incomplete.
Studies in paediatric [12–14] and adult TBM [13] demonstrate associations between im-
mune mediators and clinical outcome, and suggest that a disequilibrium of pro- and
anti-inflammatory cytokines underlies the severity and course of TBM. This balance can be
regulated by Leukotriene A4 Hydroxylase (LTA4H); a gene that encodes an enzyme which
influences the balance of pro- and anti-inflammatory eicosanoids seen in intracerebral
inflammation. Variations of the LTA4H genotype may contribute to heterogeneity of the
inflammatory response and outcomes in TBM [15] Studies are ongoing to further examine
the role of the LTA4H genotype on the immunoinflammatory response and the possibility
of personalising adjunctive anti-inflammatory therapy based on host genotype [13] Clues to
further understanding the biology of cerebral injury in TBM have come from biomarker sig-
natures in TBM-infected children presenting with stroke [1,14] and transcriptional profiles
demonstrating compartmentalisation of the immune response within the CNS (ventricular
vs. lumbar CSF) [16].

A review of the natural history of childhood intrathoracic tuberculosis in the pre-
chemotherapy era found that young age (<2 years of age) was the major determinant of
progression from TB infection to disease; pulmonary disease developed in 30–40% and
TBM or miliary disease in 10–20% of infants, and the highest risk was within 4 months
of infection [1]. In a world-wide meta-analysis of case-control studies, neonatal Bacille
Calmette-Guérin (BCG) vaccination was shown to protect against TBM in children up
to 5 years of age with a pooled efficacy of 73% [17,18]. Non-specific symptoms and the
accompanying difficulty with early diagnosis highlight the importance of TBM prevention
with BCG vaccination in young children. TB preventative therapy following TB exposure is
another key preventive strategy that substantially lowers the risk of developing TB disease
in young children [19] but implementation is poor in high TB burden settings [20].

3. Epidemiology

The World Health Organization (WHO) estimates that 1.2 million children (<15 years
of age) developed TB in 2019 [21]. Yet, only 523,000 of these were notified by TB pro-
grams globally that year, leaving more than half of all children with TB undiagnosed or
diagnosed but not reported [21]. Despite this large reporting gap, substantial progress
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has been made to strengthen paediatric TB surveillance since 2011, including reporting of
age-disaggregated data on case notifications in 5-year age bands and also on outcomes for
both drug-susceptible and drug-resistant paediatric TB since 2020 [21]. Despite current
standard treatment and prevention strategies, the large number of children with undiag-
nosed TB (case detection gap) results in TB remaining one of the top 10 causes of childhood
mortality [22].

Childhood TB accounts for 5–20% of the total TB caseload in a population, depending
on the population age structure, TB and HIV prevalence, and availability of preventative
measures [23]. Most low- and middle-income countries, typically those also affected most
by TB, have a relatively young population (broad-based population pyramid) [24]. In
these countries, the annual risk of TB infection is high, with younger children having an
increased risk of TB exposure and infection. As the risk for progression from TB infection
to TB disease, and even more so to TBM, is age-related and disproportionately high in
children younger than 2 years, more TB infections in this age group not only leads to more
children who develop TB, but also to more children with TBM [1].

At present, there are no estimates for the number of children affected by TBM. Current
TB surveillance data does not require reporting of severe forms of TB, such as TBM, and
even the number of children diagnosed, treated and reported are not known. This limits our
ability to raise an adequate and effective response to TBM in children [25]. A study from
Germany demonstrated that although the overall proportion of TB cases that were TBM
was ~1%, this figure was 3.9% in children <5 years, 2.2% in children aged 5–9 years and
1.3% in children aged 10–14 years [26]. If 2% of childhood TB is TBM, then 20,000 childhood
TBM cases are to be estimated each year globally. Including surveillance of TBM as part of
monitoring and evaluation of paediatric TB care can help us measure and report both on
the burden and outcomes of TBM in children and identify health system challenges. Given
the substantial morbidity and often life-long disability suffered by children who survive,
data on the burden of post-TBM health in children is critical to ensure adequate healthcare
support is available to these children and their families. One way of better understanding
the relationship between TBM in children and the health system response, is through
cascade analysis. By evaluating drop offs at each stage in the care cascade, programmatic
challenges and research priorities can be identified (Figure 1). There is a sequential drop-off
in numbers of TBM-infected children at each stage of care from presentation to health
services to long-term outpatient monitoring. Combined with the real-world challenges
at each of these stages, the true number of children with TBM who die or survive with
sequelae is far greater than currently appreciated.
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Figure 1. The cascade of care for children with tuberculous meningitis, illustrating how new research
developments and optimised programmatic care could reduce drop off at each stage. BCG: bacille
Calmette–Guérin; TPT: tuberculosis preventive therapy; LMIC: low- and middle-income country;
TBM: tuberculous meningitis; TB: tuberculosis.

4. Diagnosis

TBM in paediatric practice is diagnosed based on a combination of clinical, laboratory
and neuroimaging findings (Figure 2) [27]. Clinical prediction rules to distinguish TBM
from other forms of meningitis have been proposed [28,29], whilst diagnostic algorithms
such as the uniform research case definition [30] are designed for research purposes only.
Clinical diagnostic rules are hampered by variable performance in different settings and
lack of external validation [31]. To improve outcomes clinicians should maintain clinical
suspicion and empirically treat suspected TBM without waiting for confirmatory results.

TBM can affect patients of all ages, however the brunt of disease is felt in early
childhood with peak incidence commonly between 2 to 4 years [32] when the brain is
still developing. It is difficult to make an early clinical diagnosis of TBM in childhood,
subsequently resulting in delayed diagnosis and treatment, with an often inevitable poor
outcome [3,32,33]. The classical presentation of TBM is as a subacute meningitic illness,
however neck stiffness is often absent early in the course of the disease [34]. In order to
recognize early stage TBM in children, clinicians in TB-endemic settings must be aware that
TBM most commonly presents with non-specific symptoms of general ill health. However,
the persistence of symptoms allows differentiation from other common illnesses with
similar presentation (e.g., influenza) [35]. Household exposure to an adult source case with
pulmonary TB within the previous year should heighten suspicion of TBM.
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tuberculous meningitis. Xpert MTB/RIF or Xpert Ultra is recommended by WHO as the initial
diagnostic test in CSF for TBM rather than smear microscopy/culture although evidence for test
accuracy of Xpert Ultra for TBM in children is limited. TBM: tuberculous meningitis; TB: tuberculosis;
PTB: pulmonary TB; CSF: cerebrospinal fluid; CXR: chest X-ray; USS: ultrasound scan; FNA: fine
needle aspiration; MRI: magnetic resonance imaging; GI: gastrointestinal; CT: computerised tomog-
raphy; AFB: acid fast bacilli; CNS: central nervous system; HSV: herpes simplex virus; LP: lumbar
puncture; GCS: Glasgow Coma Scale score.

Both neuroimaging and CSF analysis are essential in the diagnostic assessment of
paediatric TBM (Figure 2). Computed tomography (CT) is more readily available than
magnetic resonance imaging (MRI) in resource-constrained settings [36]. Classic CT find-
ings include pre- and post-contrast basal meningeal exudates, hydrocephalus, infarcts
and tuberculomas [37]. MRI is superior in the early identification of TBM as gadolinium
enhancement can detect small leptomeningeal tuberculomas, and diffusion-weighting can
detect early infarction, both not reflected on CT [38,39]. Leucocytosis with lymphocyte pre-
dominance, elevated protein and abnormally decreased CSF glucose are highly suggestive
of TBM [32,40,41]. Both an absolute CSF glucose value of <2.2 mmol/L and CSF protein
>1 g/L differentiate TBM from viral or no meningitis in children with good specificity,
albeit with poor sensitivity. CSF to serum glucose ratio, infrequently performed, is essential
to provide additional information value [42].

Mycobacterial confirmation in children with presumed TBM is difficult due to low
CSF volumes obtained and the paucibacillary nature of TBM. CSF microscopy is hampered
by low sensitivity [43] however yields may be improved by centrifugation and longer
examination time. Even though sensitivity of CSF culture is higher than microscopy, it
remains sub-optimal and the result rarely influences clinical management due to delays of
up to 8 weeks [31]. Nucleic-acid amplification testing offers the prospect of a rapid and
specific result, however few tests have undergone validation. Xpert MTB/ RIF (Cepheid,
Sunnyvale, CA, USA) is a commercial, real-time PCR-based assay for the detection of
M. tuberculosis in clinical specimens. In 2015 Xpert MTB/RIF has been recommended by
the WHO as an essential diagnostic test if TBM is suspected, however caution is advised
for its use as a ‘rule out’ test [44,45]. The second generation Xpert MTB/RIF, XpertUltra,
detects TBM with marginally higher sensitivity than Xpert and poor negative predictive
value in adults, meaning it cannot be used to rule out TBM [46–48]. In children, poor
positive predictive value may be more of an issue. The meaning of trace positive results
on XpertUltra also is not understood. Inspite of these limitations, Xpert MTB/Rif or Xpert
Ultra is able to provide a result in under 1.5 h; a crucial advantage when initiating early
anti-tuberculosis therapy if positive (Figure 2). We propose a diagnostic algorithm for
presumptive TBM in children which incorporates clinical, CSF, neuroimaging features and
rapid diagnostic results and provide guidance for possible clinical scenarios, including
when diagnostic tools are negative or inconclusive for TBM and the clinician left to make
a clinical judgement (Figure 2).

Diagnostic tests for TBM are relatively expensive and inaccessible in resource-constrained
areas, invasive and perform poorly in isolation [30,49]. Recent technological advances have
made it possible to screen for many biomarkers in a minute volume of CSF. A three-marker
CSF biosignature comprising IL-13, VEGF and cathelicidin LL-37, diagnosed childhood
TBM with a sensitivity of 52%, specificity of 95%, with positive and negative predictive
values of 91% and 66% respectively [50]. Validation of this three-marker CSF biosignature
in a different cohort revealed positive and negative predictive values of 90% and 59.5%
respectively [49]. In a study investigating potentially useful host CSF biomarkers in child-
hood TBM, a combination of IFN-γ, MPO and VEGF showed good accuracy (AUC = 0.97,
up to 91.3% sensitivity and up to 100% specificity) [49]. Low CSF tryptophan concentration
is associated with survival in TBM patients [51]. The CSF metabolome in TBM is also
characterized by amino acids (besides for tryptophan), organic acids, nucleotides and
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carbohydrates, all linked to altered neuro-energetics [52–54]. CSF metabolomics studies of
paediatric TBM [55–57] is advancing from a proof-of-concept, exploratory phase towards
validation and standardization as biomarkers [54]. Other host-immune response testing
(e.g., CSF IFN-γ release assays) have only moderate diagnostic accuracy [58] while system-
atic reviews on CSF adenosine deaminase levels concluded that heterogeneity in methods
and data limit applicability in clinical practice [31,59,60]. It remains to be seen whether
biomarker-based approaches can be transformed into easy-to-use point-of-care diagnostic
tests [61], especially, in resource-limited settings, but it is likely that the future of TBM
diagnosis will require a combination of pathogen testing and host-immune biomarkers.

5. Treatment

Currently, the WHO recommends treatment for paediatric TBM similar to that used
for pulmonary TB—isoniazid, rifampicin, and pyrazinamide plus ethambutol—given at
standard doses, albeit with treatment extension from 6 to 12 months. This recommenda-
tion was provided with low quality of evidence prior to the implementation of GRADE
procedures in WHO guidelines processes [62]. However, to be effective, drugs must be
present at therapeutic concentrations at the site of disease. This is critically important early
in treatment, to prevent mortality and neurocognitive disabilities. The latter is particularly
important for children whose developing brains render them susceptible to brain injury
from TBM or its treatment. Several first-line anti-tuberculosis drugs (e.g., rifampicin and
ethambutol) have poor penetration across the blood-brain and the blood-CSF barriers [63].
Rifampicin remains an essential medication for TBM [64] but standard dosing yields CSF
concentrations that are below the minimal inhibitory concentration (MIC) for M. tubercu-
losis in a large proportion of patients, including children [65–67]. A recent model-based
meta-analysis using emerging data from adult trials showed a strong positive correlation
between rifampicin concentrations and survival, with doses of at least 30 mg/kg predicted
to improve survival substantially compared to 10 mg/kg [68]. A dose of 35 mg/kg daily
is being tested in a definitive Phase 3 trial [69] but higher mg/kg doses than that will be
needed to achieve adult-equivalent exposures in children [70]. In children, a small trial
suggested that a dose increase to 30 mg/kg improved neurocognitive function compared
to standard dosing [71].

While higher rifampicin exposures were associated with improved outcomes in In-
donesia for adults, in a large adult study in Vietnam, isoniazid exposures correlated more
strongly with survival [72]. While isoniazid penetrates freely into CSF, patients with fast
n-acetyltransferase 2 (NAT2) genotype may experience sub-therapeutic concentrations.
Pyrazinamide passes easily into CSF, but its contribution to TBM treatment remains poorly-
defined [73]. Recently approved as an alternative to standard of care, the ‘Cape Town
regimen’ takes into account the pharmacokinetics of anti-TB drugs, including information
about their CNS distribution. This regimen, used for paediatric TBM in South Africa for
over 20 years, includes high-dose rifampicin, high-dose isoniazid, ethionamide, and pyraz-
inamide for 6 months [74]. Following a recent systematic review and meta-analysis (3 stud-
ies, 1006 participants) showing improved mortality in children who received a 6-month
intensified regimen for TBM compared to the standard 12 months, WHO issued a rapid
communication on TB management suggesting that the shortened regimen could be used
as an alternative in children and adolescents [75]. Two paediatric clinical trials SURE (IS-
RCTN40829906) and TBM-KIDS (NCT02958709) are currently underway and will measure
mortality, functional status and neurocognitive outcomes in children receiving shortened
intensified drug regimen (optimised dosing of rifampicin, with isoniazid, pyrazinamide,
and levofloxacin) versus the standard WHO regimen.

Second-line drugs may be needed either for drug-resistant TBM, or to replace drugs
that display poor CNS penetration or cause toxicity. Fluoroquinolones achieve high CSF
concentrations and are generally safe in children, though there have been some reports
of intracranial hypertension and seizures associated with these agents [76,77]. Linezolid
is used for CNS infections involving gram positive bacteria, and early data from cohort
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studies suggest this drug is also good for TBM [78–80] though its toxicities make use
beyond 8 weeks challenging [81]. Delamanid or pretomanid may be useful in TBM [82] and
bedaquiline appears to have similar free-drug concentrations in CSF as in plasma [83], but
the place of these newer anti-TB drugs in TBM remains to be established. Another clinically
challenging situation is HIV-associated TBM. While in adults, antiretroviral therapy (ART)
is typically delayed until the intensive phase of TBM treatment is complete [84] the right
timing for introduction of ART in children, who tend to have more rapid progression to
severe HIV, is unknown.

To address the pathological impact of the host response, adjunctive steroids are given
as standard of care in TBM. Additional host-directed therapies may be useful for select
patients, including aspirin or low-dose thalidomide [85–87]. Whilst RCTs evaluating
aspirin are underway, the role of non-corticosteroids adjuvant agents is not yet established.
Management of CNS complications of TBM - infarcts, seizures, hydrocephalus - remains
central to the care of individuals with this disease, and some published guidance documents
have been produced to aid clinicians [88,89].

6. Outcomes

Despite the advent of anti-TB chemotherapy and corticosteroids most deaths (95%)
from TBM will still occur by 6 months [69]. An observational report in 1961 on long-term
outcomes in children with TBM, was the first to highlight persistent neurodevelopmental
sequelae years following completion of TB treatment [90]. Younger age (<2 years of age)
and more severe disease at diagnosis was associated with worse neurological sequelae [90].
Whilst there has been recent progress in management of TBM, it has not yet translated into
outcome benefits in clinical practice. Adjuvant corticosteroids reduce mortality in TBM,
but they do not reduce neurodisability in survivors [91].

A concerning 65% of children who survive TBM do so with some form of disability
ranging from motor, sensory, cognitive to developmental deficits [3,92]. This is likely to
be under-identified due to lack of surveillance and a standardised approach to follow-up.
Reported outcomes vary depending on prevalence of risk factors including HIV co-infection,
drug resistance [93] severe hydrocephalus, cerebral infarct, brainstem dysfunction, raised
intracranial pressure and malnutrition [32,33,94–96]. Lack of access to supportive care
and neurorehabilitation in low-resourced, TB-endemic settings further exacerbate poor
outcomes [97]. Whilst reasons for poor outcomes are likely to be multifactorial, diagnosis
before the onset of coma remains the most crucial factor predicting survival and favourable
outcomes [98].

Predicting prognosis in children with TBM is difficult owing to its insidious onset,
diversity of immunopathology under various genetic influences and limited knowledge
about the durability of brain injury in children. Emerging evidence, using biomarkers of
cerebral injury usually seen in neurodegenerative disease, suggest that brain injury in TBM
increases over time and lasts long after completion of TB treatment and corticosteroids [12].
New molecular techniques (i.e., transcriptomics, proteomic and metabolomics) charac-
terising signatures linking clinical phenotypes with TBM outcomes will likely advance
knowledge in markers of prognostication [16,51]. Currently, the best association with
6-month neurological outcomes is clinical staging of severity using refined MRC grading
system one week after diagnosis [99].

Long-term outcomes in children with TBM include cerebral palsy (e.g., hemiplegia)
vision impairment (e.g., blindness), hearing loss, cognitive impairment (e.g., learning
capacity), chronic seizure disorder, behavioural disturbance (e.g., Attention Deficit Hy-
perreactivity Disorder) and developmental disability [32,100]. Notably, neurocognitive
deficits can occur without accompanying physical disability [33]. Neurocognitive and
functional impairment is difficult to fully characterise due to diversity of phenotypes and
recovery across age groups, loss to follow-up, and a lack of testing specifically developed
or validated for evaluation in TBM [101].
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7. Conclusions

TBM in children remains a devastating disease, associated with substantial morbidity
and mortality. It is challenging to diagnose and treat early; much of the damage has already
occurred before the child is started on appropriate therapy. Our understanding of the
pathophysiology and epidemiology of the condition is improving, and novel diagnostic
approaches are being developed. New anti-TB drug regimens and dosing strategies are
under evaluation, emerging host-directed therapies are being explored and supportive care
is improving. However, substantial gains could be made by strengthening existing health
systems, to allow earlier diagnosis and appropriate treatment and optimised surveillance
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