14 research outputs found

    Fermentation and energetic value of fiber in feed ingredients and diets fed to pigs

    Get PDF
    Four experiments were conducted to determine the fermentation and energetic value of fiber in feed ingredients and diets fed to pigs. In Exp. 1, degradation of dietary fiber in the stomach, small intestine, and hindgut of pigs fed corn- or wheat-based diets without or with microbial xylanase was determined. Results indicated that the apparent ileal digestibility (AID) of GE in corn-soybean meal (SBM) or wheat-SBM diets was greater (P< 0.05) than in the corn-SBM-distillers dried grains with solubles (DDGS) and wheat-SBM-wheat middlings diets, but no difference was observed for the AID of dietary fiber between wheat-SBM and wheat-SBM-wheat middlings diets. The apparent total tract digestibility (ATTD) of dietary fiber was also greater (P < 0.05) in corn-SBM and wheat-SBM diets compared with corn-SBM-DDGS and wheat-SBM-wheat middlings diets, which indicates that the concentration of dietary fiber may influence the degree of fermentation of fiber. Inclusion of a microbial xylanase improved (P < 0.05) the apparent duodenal digestibility (ADD) and the ATTD of nutrients and dietary fiber in wheat-based diets, indicating activity of xylanase in the gastro-intestinal tract of pigs. The concentration of DE and ME in wheat-based diets was also improved (P < 0.05) by microbial xylanase, but that was not the case if microbial xylanase was added to the corn-based diets. In Exp. 2, the hypothesis that values for ileal and total tract digestibility of dietary fiber in mixed diets are more accurately predicted from values for standardized ileal digestibility (SID) and standardized total tract digestibility (STTD) of fiber in individual ingredients than from values for AID or ATTD of fiber. Results indicated that measured and predicted AID, SID, ATTD, and STTD of most dietary fractions in diets based on wheat middlings and soybean hulls were not different. Likewise, no differences were observed between the predicted and measured AID and SID of all dietary fiber components in diet based on DDGS, wheat middlings, and soybean hulls. However, the measured AID, SID, ATTD, and STTD of some dietary fiber components in diets based on DDGS and wheat middlings or DDGS and soybean hulls was different from the predicted values. The measured ATTD and STTD of some dietary fiber fractions in the diet based on DDGS, wheat middlings, and soybean hulls was also different from the predicted values. It was also concluded that values for SID or STTD did not improve additivity of digestibility values compared with values for AID or ATTD. Experiment 3 was conducted to test the hypothesis that pentoses that enter the small intestine may affect energy and CP utilization in pigs. Results indicated that AID of GE and OM in pigs fed a diet containing arabinose instead of glucose or xylose was reduced, but no difference was observed for the AID of CP and most AA among diets indicating that xylose and arabinose do not impact protein digestibility or utilization. No differences were observed for the ATTD of GE, DM, and OM, DE, N balance, and biological value of N among diets. However, more (P < 0.01) energy was excreted in the urine from pigs fed the xylose or arabinose diets compared with pigs fed the glucose diet, thereby reducing (P < 0.01) ME in these diets compared with the glucose diet. The AID of glucose, xylose, and arabinose was close to 100% and the ileal retention rates of xylose and arabinose were 82.57 and 82.41%, respectively, which may indicate that certain metabolites from xylose or arabinose were excreted in the urine and analyzed as energy. In Exp. 4, the hypothesis that pentoses cannot be absorbed from the hindgut, but instead are fermented in the large intestine, was tested. Arabinose or xylose was infused into the hindgut of pigs and the impact of xylose and arabinose on energy utilization, excretion of pentoses in urine and feces, and on concentration of fecal VFA were determined. No differences were observed for the ATTD of GE, DM, ash, and OM or in DE and ME of the diets. However, the pH in feces was reduced if arabinose was infused indicating increased fermentation in the hindgut. In conclusion, microbial xylanases used in this experiment improved the digestibility of dietary fiber in the stomach and hindgut of pigs and improved energy status of pigs fed wheat-based diets, but not of pigs fed corn-based diets. Bulk density and SDF of the diet are better predictors of DE and ME compared with other physical or chemical characteristics of the diet. Correcting for endogenous losses does not increase additivity of digestibility values for dietary fiber in mixed diets. Dietary pentoses are mostly absorbed prior to the end of the small intestine of pigs and may reduce energy utilization, but they do not affect CP utilization in pigs

    Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs.

    Get PDF
    High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying. Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and finishing pigs. Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced. Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible energy (DE) and metabolizable energy (ME) are slightly less in full fat rice bran than in corn, but defatted rice bran contains less than 75 % of the DE and ME in corn. The concentration of crude protein is 15 to 18 % in rice bran and the protein has a high biological value and most amino acids are well digested by pigs. Inclusion of rice bran in diets fed to pigs has yielded variable results and based on current research it is recommended that inclusion levels are less than 25 to 30 % in diets for growing-finishing pigs, and less than 20 % in diets for weanling pigs. However, there is a need for additional research to determine the inclusion rates that may be used for both full fat and defatted rice bran

    Chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia

    Get PDF
    Objective A study was conducted to determine the chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia, and to test the hypothesis that production area or production methods can impact the chemical composition of wheat co-products. Methods Samples included seven barley grains, two malt barley rootlets, one corn gluten feed, one corn gluten meal, one corn bran, eight wheat brans, one wheat mill mix, and four wheat pollards. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid hydrolyzed ether extract, ash, minerals, starch, and insoluble dietary fiber and soluble dietary fiber. Malt barley rootlets and wheat co-products were also analyzed for sugars. Results Chemical composition of barley, malt barley rootlets, and corn co-products were in general similar across countries. Wheat pollard had greater (p<0.05) concentrations of tryptophan, magnesium, and potassium compared with wheat bran, whereas wheat bran had greater (p<0.05) concentration of copper than wheat pollard. There were no differences in chemical composition between wheat bran produced in Australia and wheat bran produced in Thailand. Conclusion Intact barley contains more starch, but fewer AA, than grain co-products. There were only few differences in the composition of wheat bran and wheat pollard, indicating that the two ingredients are similar, but with different names. However, corn gluten meal contains more protein and less fiber than corn bran

    Impact of in vitro gastrointestinal digestion on peptide profile and bioactivity of cooked and non-cooked oat protein concentrates

    Get PDF
    Oat (Avena sativa) is one of the most cultivated and consumed cereals worldwide. Recognized among cereals for its high protein content (12% to 24%), it makes it an excellent source of bioactive peptides, which could be modified during processes such as heating and gastrointestinal digestion (GID). This work aims to evaluate the impact of heat treatment on the proteolysis of oat proteins and on the evolution of antioxidant peptide release during in vitro static GID, in terms of comparative analysis between cooked oat protein concentrate (COPC) and non-heated oat protein concentrate (OPC) samples. The protein extraction method and cooking procedure used showed no detrimental effects on protein quality. After GID, the proportion of free amino acids/dipeptides (40% for both samples (OPC and COPC), thus producing peptides with low molecular weight and enhanced bioactivity. Furthermore, during GID, the amino acid profile showed an increase in essential, positively-charged, hydrophobic and aromatic amino acids. At the end of GID, the reducing power of OPC and COPC increased >0.3 and 8-fold, respectively, in comparison to the non-digested samples; while ABTS•+ and DPPH• showed a >20-fold increase. Fe2+ chelating capacity of OPC and COPC was enhanced >4 times; similarly, Cu2+ chelation showed a >19-fold enhancement for OPC and >10 for COPC. β-carotene bleaching activity was improved 0.8 times in OPC and >9 times in COPC; the oxygen radical antioxidant capacity assay increased 2 times in OPC and >4.7 times in COPC, respectively. This study suggests that OPC after cooking and GID positively influenced the nutritional and bioactive properties of oat peptides. Thus, COPC could be used as a functional food ingredient with health-promoting effects, as hydrothermal treatment is frequently used for this type of cereals

    Structures and characteristics of carbohydrates in diets fed to pigs: a review

    No full text
    Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-d-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose. Overall, understanding the structure, characteristics and measurable chemical properties of fiber in feed ingredients may result in more accurate diet formulations, resulting in an improvement in the utilization of energy from less expensive high-fiber ingredients and a reduction in reliance on energy from more costly cereal grains

    Chemical composition of cassava-based feed ingredients from South-East Asia

    Get PDF
    Objective Information about the chemical composition of cassava-based feed ingredients is needed to accurately formulate animal diets. A study was conducted to determine the chemical composition of cassava-based feed ingredients and to test the hypothesis that there is variation in chemical composition among cassava products originating from different South-East Asian countries. Methods Sources of dried peeled and unpeeled cassava roots, cassava chips, cassava meal, high-ash cassava meal, and cassava residue were used. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid-hydrolyzed ether extract (AEE), ash, minerals, total starch, insoluble dietary fiber, and soluble dietary fiber. Samples of peeled and unpeeled cassava roots, cassava chips, and cassava meal were also analyzed for sugars. Results High-ash cassava meal had greater (p<0.05) dry matter and ash, but lower (p<0.05) total starch and gross energy than all other cassava products. Peeled cassava roots, unpeeled cassava roots, and cassava chips had greater (p<0.05) total starch than the other cassava-based ingredients. Cassava residue had greater (p<0.05) concentrations of lysine, insoluble dietary fiber, and soluble dietary fiber compared with the other cassava products, but tryptophan and glutamic acid were greater (p<0.05) in peeled cassava roots, cassava chips, and cassava meal samples compared with the other ingredients. Concentration of most minerals was greater (p<0.05) in high-ash cassava meal than in the other cassava products. Conclusion Cassava-based ingredients sold as peeled roots, unpeeled roots, chips, or meal have chemical compositions that are not different from each other, and peeling has little impact on chemical composition. High-ash cassava meal has lower nutritional quality compared with other cassava products due to low starch and gross energy. The high fiber content in cassava residue makes this ingredient more suitable for ruminants and sows than for younger pigs or poultry

    Chemical composition of copra, palm kernel, and cashew co-products from South-East Asia and almond hulls from Australia

    Get PDF
    Objective Oilseeds and nut co-products can be used as alternative feed ingredients in animal diets because they may have a lower cost than traditional ingredients. A study was, therefore, conducted to determine the chemical composition of copra, palm kernel, and nut co-products from South-East Asia or Australia. The hypothesis that country of production influences nutritional composition was tested. Methods Oilseed meals included 2 copra expellers, 3 copra meals, and 12 palm kernel expellers. One source of almond hulls and cashew nut meal were also used. Samples were obtained from suppliers located in South-East Asia or Australia. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid-hydrolyzed ether extract (AEE), ash, minerals, insoluble dietary fiber, and soluble dietary fiber. Copra and nut co-products were also analyzed for total starch and sugars. Results Copra expellers had greater (p<0.05) concentrations of dry matter and AEE compared with copra meal. However, copra meal had greater (p<0.05) concentrations of total dietary fiber (soluble and insoluble) and copper than copra expellers. Palm kernel expellers from Indonesia had greater (p<0.05) concentration of histidine and tyrosine compared with palm kernel expellers from Vietnam. Almond hulls was high in dietary fiber, but also contained free glucose and fructose, whereas cashew nut meal was high in AEE, but low in all free sugars. Conclusion Copra expellers have greater concentration of AEE, but less concentration of total dietary fiber when compared with copra meal, and except for a few AA, no differences in nutrient composition of palm kernel expellers produced in Indonesia or Vietnam were detected. According to the chemical composition of nut co-products, cashew nut meal may be more suitable for non-ruminant diets than almond hulls

    Non-antibiotic feed additives in diets for pigs: A review

    No full text
    A number of feed additives are marketed to assist in boosting the pigs' immune system, regulate gut microbiota, and reduce negative impacts of weaning and other environmental challenges. The most commonly used feed additives include acidifiers, zinc and copper, prebiotics, direct-fed microbials, yeast products, nucleotides, and plant extracts. Inclusion of pharmacological levels of zinc and copper, certain acidifiers, and several plant extracts have been reported to result in improved pig performance or improved immune function of pigs. It is also possible that use of prebiotics, direct-fed microbials, yeast, and nucleotides may have positive impacts on pig performance, but results have been less consistent and there is a need for more research in this area. Keywords: Acidifiers, Direct-fed microbials, Minerals, Plant extracts, Prebiotics, Pig
    corecore