57 research outputs found

    New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania

    Get PDF
    Background: Malaria mosquitoes form mating swarms around sunset, often at the same locations for months or years. Unfortunately, studies of Anopheles swarms are rare in East Africa, the last recorded field observations in Tanzania having been in 1983. Methods: Mosquito swarms were surveyed by trained volunteers between August-2016 and June-2017 in Ulanga district, Tanzania. Identified Anopheles swarms were sampled using sweep nets, and collected mosquitoes killed by refrigeration then identified by sex and taxa. Sub-samples were further identified by PCR, and spermatheca of females examined for mating status. Mosquito ages were estimated by observing female ovarian tracheoles and rotation of male genitalia. GPS locations, types of swarm markers, start/end times of swarming, heights above ground, mosquito counts/swarm, and copulation events were recorded. Results: A total of 216 Anopheles swarms were identified, characterized and mapped, from which 7,142 Anopheles gambiae s.l and 13 Anopheles funestus were sampled. The An. gambiae s.l were 99.6% males and 0.4% females, while the An. funestus were all males. Of all An. gambiae s.l analyzed by PCR, 86.7% were An. arabiensis, while 13.3% returned non-amplified DNA. Mean height (±SD) of swarms was 2.74±0.64m, and median duration was 20 (IQR; 15-25) minutes. Confirmed swarm markers included rice fields (25.5%), burned grounds (17.2%), banana trees (13%), brick piles (8.8%), garbage heaps (7.9%) and ant-hills (7.4%). Visual estimates of swarm sizes by the volunteers was strongly correlated to actual sizes by sweep nets (R=0.94; P=<0.001). All females examined were nulliparous and 95.6% [N=6787] of males had rotated genitalia, indicating sexual maturity. Conclusions: This is the first report of Anopheles swarms in Tanzania in more than three decades. The study demonstrates that the swarms can be identified and characterized by trained community-based volunteers, and highlights potential new interventions, for example targeted aerosol spraying of the swarms to improve malaria control

    Laboratory and experimental hut trial evaluation of VECTRON™ T500 for indoor residual spraying (IRS) against insecticide resistant malaria vectors in Burkina Faso

    Get PDF
    Background: Malaria cases in some areas could be attributed to vector resistant to the insecticide. World Health Organization recommended insecticides for vector control are limited in number. It is essential to find rotational partners for existing Indoor Residual Spraying (IRS) products. VECTRON™ T500 is a novel insecticide with broflanilide as active ingredient. It has a mode of action on mosquitoes completely different to usually used. The aim of this study was to determine the optimum effective dose and efficacy of VECTRONTM T500 against susceptible and resistant strains of Anopheles in Burkina Faso. Methods: VECTRON™T500 was sprayed at 50, 100 and 200 mg/m² doses onto mud and concrete blocks using Potter Spray Tower. The residual activity of broflanilide was assessed through cone bioassays 1 week and then monthly up to 14 months post spraying. Its efficacy was evaluated at 100 and 150 mg/m² against wild free-flying mosquitoes in experimental huts on both substrates. Actellic 300CS was applied at 1000 mg/m² as reference product. Cone assays were conducted monthly, using susceptible and resistant mosquito strains. Results: In the laboratory, VECTRON™ T500 showed residual efficacy (≥80% mortality) on An. gambiae Kisumu up to 12 and 14 months, respectively, on concrete and mud blocks. Similar results were found with 100 and 200 mg/m² using An. coluzzii pyrethroid resistant strain. In experimental huts, a total of 19,552 An. gambiae s.l. were collected. Deterrence, blood-feeding inhibition and exophily with VECTRON™ treated huts were very low. At 100 and 150 mg/m², mortality of wild An. gambiae s.l. ranged between 55% and 73%. Monthly cone bioassay mortality remained >80% up to 9 months. Conclusions: VECTRON™ T500 shows great potential as IRS formulation for malaria vector control. It can be added to the arsenal of IRS products for use in rotations to control malaria and manage mosquito insecticide resistance

    New evidence of mating swarms of the malaria vector, Anopheles arabiensis in Tanzania

    Get PDF
    Background: Malaria mosquitoes form mating swarms around sunset, often at the same locations for months or years. Unfortunately, studies of Anopheles swarms are rare in East Africa, the last recorded field observations in Tanzania having been in 1983. Methods: Mosquito swarms were surveyed by trained volunteers between August-2016 and June-2017 in Ulanga district, Tanzania. Identified Anopheles swarms were sampled using sweep nets, and collected mosquitoes killed by refrigeration then identified by sex and taxa. Sub-samples were further identified by PCR, and spermatheca of females examined for mating status. Mosquito ages were estimated by observing female ovarian tracheoles and rotation of male genitalia. GPS locations, types of swarm markers, start/end times of swarming, heights above ground, mosquito counts/swarm, and copulation events were recorded. Results: A total of 216 Anopheles swarms were identified, characterized and mapped, from which 7,142 Anopheles gambiae s.l and 13 Anopheles funestus were sampled. The An. gambiae s.l were 99.6% males and 0.4% females, while the An. funestus were all males. Of all An. gambiae s.l analyzed by PCR, 86.7% were An. arabiensis, while 13.3% returned non-amplified DNA. Mean height (±SD) of swarms was 2.74±0.64m, and median duration was 20 (IQR; 15-25) minutes. Confirmed swarm markers included rice fields (25.5%), burned grounds (17.2%), banana trees (13%), brick piles (8.8%), garbage heaps (7.9%) and ant-hills (7.4%). Visual estimates of swarm sizes by the volunteers was strongly correlated to actual sizes by sweep nets (R=0.94; P=<0.001). All females examined were nulliparous and 95.6% [N=6787] of males had rotated genitalia, indicating sexual maturity. Conclusions: This is the first report of Anopheles swarms in Tanzania in more than three decades. The study demonstrates that the swarms can be identified and characterized by trained community-based volunteers, and highlights potential new interventions, for example targeted aerosol spraying of the swarms to improve malaria control

    Adhesion and virulence properties of native Metarhizium fungal strains from Burkina Faso for the control of malaria vectors

    Get PDF
    Background: Local strains of the entomopathogenic fungus Metarhizium pingshaense in Burkina Faso have demonstrated remarkable virulence against malaria vectors, positioning them as promising candidates for inclusion in the future arsenal of malaria control strategies. However, the underlying mechanisms responsible for this virulence remain unknown. To comprehend the fungal infection process, it is crucial to investigate the attachment mechanisms of fungal spores to the mosquito cuticle and explore the relationship between virulence and attachment kinetics. This study aims to assess the adhesion and virulence properties of native Metarhizium fungal strains from Burkina Faso for controlling malaria vectors. Methods: Fungal strains were isolated from 201 insects and 1399 rhizosphere samples, and four strains of Metarhizium fungi were selected. Fungal suspensions were used to infect 3-day-old female Anopheles coluzzii mosquitoes at three different concentrations (106, 107, 108 conidia/ml). The survival of the mosquitoes was measured over 14 days, and fungal growth was quantified after 1 and 24 h to assess adhesion of the fungal strains onto the mosquito cuticle. Results: All four fungi strains increased mosquito mortality compared to control (P<2.2–16). Adhesion of the fungal strains was observed on the mosquito cuticle after 24 h at high concentrations (1× 108 conidia/ml), with one strain, having the highest virulent, showing adhesion after just 1 h. Conclusion: The native strains of Metarhizium spp. fungi found in Burkina Faso have the potential to be effective biocontrol agents against malaria vectors, with some strains showing high levels of both virulence and adhesion to the mosquito cuticle

    Insecticide Resistance Profiling of Anopheles coluzzii and Anopheles gambiae Populations in the Southern Senegal: Role of Target Sites and Metabolic Resistance Mechanisms

    Get PDF
    The emergence and spread of insecticide resistance among the main malaria vectors is threatening the effectiveness of vector control interventions in Senegal. The main drivers of this resistance in the Anopheles gambiae complex (e.g., An. gambiae and Anopheles coluzzii) remains poorly characterized in Senegal. Here we characterized the main target site and metabolic resistances mechanisms among the An. gambiae and An. coluzzii populations from their sympatric and allopatric or predominance area in Senegal. Larvae and pupae of An. gambiae s.l. were collected, reared to adulthood, and then used for insecticides susceptibility and synergist assays using the WHO (World Health Organisation) test kits for adult mosquitoes. The TaqMan method was used for the molecular characterization of the main target site insecticide resistance mechanisms (Vgsc-1014F, Vgsc-1014S, N1575Y and G119S). A RT-qPCR (Reverse Transcriptase-quantitative Polymerase Chaine Reaction) was performed to estimate the level of genes expression belonging to the CYP450 (Cytochrome P450) family. Plasmodium infection rate was investigated using TaqMan method. High levels of resistance to pyrethroids and DDT and full susceptibility to organophosphates and carbamates where observed in all three sites, excepted a probable resistance to bendiocarb in Kedougou. The L1014F, L1014S, and N1575Y mutations were found in both species. Pre-exposure to the PBO (Piperonyl butoxide) synergist induced a partial recovery of susceptibility to permethrin and full recovery to deltamethrin. Subsequent analysis of the level of genes expression, revealed that the CYP6Z1 and CYP6Z2 genes were over-expressed in wild-resistant mosquitoes compared to the reference susceptible strain (Kisumu), suggesting that both the metabolic resistance and target site mutation involving kdr mutations are likely implicated in this pyrethroid resistance. The presence of both target-site and metabolic resistance mechanisms in highly pyrethroid-resistant populations of An. gambiae s.l. from Senegal threatens the effectiveness and the sustainability of the pyrethroid-based tools and interventions currently deployed in the country. The Kdr-west mutation is widely widespread in An. coluzzii sympatric population. PBO or Duo nets and IRS (Indoor Residual Spraying) with organophosphates could be used as an alternative measure to sustain malaria control in the study area

    Developing an expanded vector control toolbox for malaria elimination

    Get PDF
    Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions

    Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology

    Get PDF
    Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species

    Wolbachia strain wAlbB shows favourable characteristics for dengue control use in Aedes aegypti from Burkina Faso

    Get PDF
    Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti

    Multi-site comparison of factors influencing progress of African insecticide testing facilities towards an international Quality Management System certification

    Get PDF
    Background Insecticidal mosquito vector control products are vital components of malaria control programmes. Test facilities are key in assessing the effectiveness of vector control products against local mosquito populations, in environments where they will be used. Data from these test facilities must be of a high quality to be accepted by regulatory authorities, including the WHO Prequalification Team for vector control products. In 2013–4, seven insecticide testing facilities across sub-Saharan Africa, with technical and financial support from Innovative Vector Control Consortium (IVCC), began development and implementation of quality management system compliant with the principles of Good Laboratory Practice (GLP) to improve data quality and reliability. Methods and principle findings We conducted semi-structured interviews, emails, and video-call interviews with individuals at five test facilities engaged in the IVCC-supported programme and working towards or having achieved GLP. We used framework analysis to identify and describe factors affecting progress towards GLP. We found that eight factors were instrumental in progress, and that test facilities had varying levels of control over these factors. They had high control over the training programme, project planning, and senior leadership support; medium control over infrastructure development, staff structure, and procurement; and low control over funding the availability and accessibility of relevant expertise. Collaboration with IVCC and other partners was key to overcoming the challenges associated with low and medium control factors. Conclusion For partnership and consortia models of research capacity strengthening, test facilities can use their own internal resources to address identified high-control factors. Project plans should allow additional time for interaction with external agencies to address medium-control factors, and partners with access to expertise and funding should concentrate their efforts on supporting institutions to address low-control factors. In practice, this includes planning for financial sustainability at the outset, and acting to strengthen national and regional training capacity

    Ripple effects of research capacity strengthening: a study of the effects of a project to support test facilities in three African countries towards Good Laboratory Practice certification

    Get PDF
    Background: Strengthening capacity for public health research is essential to the generation of high-quality, reliable scientific data. This study focuses on a research capacity strengthening project supporting seven test facilities in Africa conducting studies on mosquito vector control products towards Good Laboratory Practice (GLP) certification. It captures the primary effects of the project on each facility’s research capacity, the secondary effects at the individual and institutional level, and the ripple effects that extend beyond the research system. The relationships between effects at different levels are identified and compared to an existing framework for the evaluation of research capacity strengthening initiatives. Methods: To capture the views of individuals engaged in the project at all levels within each facility, a maximum-variation purposive sampling strategy was used. This allowed triangulation between different data sources. Semi-structured interviews were conducted with individuals in three facilities and a combination of email and remote video-call interviews were conducted with individuals at two further facilities. Results: We found that, despite a focus of the GLP certification project at the institutional level, the project had effects also at individual (including enhanced motivation, furtherment of careers) and national/international levels (including development of regional expertise). In addition, we detected ripple effects of the project which extended beyond the research system. Conclusion: This study shows that research capacity strengthening interventions that are focussed on institutional level goals require actions also at individual and national/international levels. The effects of engagement at all three levels can be amplified by collaborative actions at the national/international level. These findings show that research capacity strengthening projects must develop plans that address and evaluate impact at all three levels. Capturing the ripple effects of investment in research capacity strengthening should also be planned for from the beginning of projects to support further engagement of all stakeholders.</ns3:p
    • …
    corecore