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Abstract: The emergence and spread of insecticide resistance among the main malaria vectors is
threatening the effectiveness of vector control interventions in Senegal. The main drivers of this
resistance in the Anopheles gambiae complex (e.g., An. gambiae and Anopheles coluzzii) remains poorly
characterized in Senegal. Here we characterized the main target site and metabolic resistances
mechanisms among the An. gambiae and An. coluzzii populations from their sympatric and allopatric
or predominance area in Senegal. Larvae and pupae of An. gambiae s.l. were collected, reared to
adulthood, and then used for insecticides susceptibility and synergist assays using the WHO
(World Health Organisation) test kits for adult mosquitoes. The TaqMan method was used for the
molecular characterization of the main target site insecticide resistance mechanisms (Vgsc-1014F,
Vgsc-1014S, N1575Y and G119S). A RT-qPCR (Reverse Transcriptase-quantitative Polymerase Chaine
Reaction) was performed to estimate the level of genes expression belonging to the CYP450
(Cytochrome P450) family. Plasmodium infection rate was investigated using TaqMan method.
High levels of resistance to pyrethroids and DDT and full susceptibility to organophosphates
and carbamates where observed in all three sites, excepted a probable resistance to bendiocarb in
Kedougou. The L1014F, L1014S, and N1575Y mutations were found in both species. Pre-exposure to
the PBO (Piperonyl butoxide) synergist induced a partial recovery of susceptibility to permethrin and
full recovery to deltamethrin. Subsequent analysis of the level of genes expression, revealed that
the CYP6Z1 and CYP6Z2 genes were over-expressed in wild-resistant mosquitoes compared to the
reference susceptible strain (Kisumu), suggesting that both the metabolic resistance and target site
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mutation involving kdr mutations are likely implicated in this pyrethroid resistance. The presence of
both target-site and metabolic resistance mechanisms in highly pyrethroid-resistant populations of
An. gambiae s.l. from Senegal threatens the effectiveness and the sustainability of the pyrethroid-based
tools and interventions currently deployed in the country. The Kdr-west mutation is widely widespread
in An. coluzzii sympatric population. PBO or Duo nets and IRS (Indoor Residual Spraying) with
organophosphates could be used as an alternative measure to sustain malaria control in the study area.

Keywords: malaria; An. coluzzii; An. gambiae; pyrethroid; kdr; N1575Y; metabolic resistance; Senegal

1. Introduction

The control of malaria vector in Africa relies mainly on the two core insecticide-based interventions:
Long-Lasting Insecticide Nets (LLINs) and Indoor Residual Spraying (IRS) [1]. Four main classes of
insecticide are available for use in the public health (pyrethroids, organochlorines, organophosphates
and carbamates), with pyrethroids being the main class approved for the impregnation of nets [2].
Given the heavy reliance on pyrethroid-based strategies for malaria vector control, the spread across
sub-Saharan Africa of the resistance to this class of insecticide threatens the sustainability of current
and future vector control interventions. Thus, providing accurate and timely information about the
evolution of the main insecticide resistance mechanisms is vital for the implementation of targeted and
cost-effective control measures.

Two main types of mechanisms are involved in the resistance of An. gambiae to the principal
classes of insecticide use in the public health sector: the target-site insensitivity [3,4] and the metabolic
activity of detoxification enzyme families such as cytochrome P450s, glutathione S-transferases and
esterases [5]. Target site insensitivity to DDT and pyrethroid in An. gambiae is associated to single-point
mutation at the 1014 position in the voltage-gated sodium channel gene (Vgsc) known as knock-down
resistance (kdr). The Vgsc-1014F and Vgsc-1014S mutations, respectively known as kdr-west and
kdr-east [6,7], are among the most widespread target-site insecticide resistance mechanisms found
among the natural population of An. coluzzii and An. gambiae [8] across the Western and Eastern
Africa [4,9–12]. Previous studies in West Africa reported the absence of the kdr mutation in An. coluzzii
even in the sympatric population [6,7,13]. However, subsequently, this mutation was found in both
species with higher frequency of L1014F mutation in An. coluzzii [14] suggesting a introgression from
An. gambiae to An. coluzzii [15]. The G119S-Ace-1 mutation is involved in bendiocarb resistance in
An. gambiae s.l. in West Africa [16,17] and the N1575Y confer resistance to DDT and pyrethroid in west
Africa [18,19].

In Senegal, four members of the An. gambiae complex were described so far, including the two
incipient species An. coluzzii and An. gambiae, the two main malaria vectors across the continent.
It have been reported in 2016 the presence and wide distribution of the Vgsc-1014F mutation among
the wild populations of An. gambiae and An. coluzzii from a sympatric area in the south-eastern
part of the country [20]. However, few data are available on the frequency and distribution of
the Vgsc-1014F and Vgsc-1014S mutations in areas where one of the two species is predominant
(allopatric area). The Moreover, few if any study has taken a holistic approach to characterize altogether
the main target sites (Vgsc-1014F, Vgsc-1014S, N1575Y and G119S) as well as the putative metabolic
mechanism. This infer the evolutionary processes underlying the emergence and spread of insecticide
resistance among the natural populations of the two incipient species of the An. gambiae complex
(e.g., An. gambiae and An. coluzzii) across their different range of distribution.

Here, we characterized the main target site and metabolic resistance mechanisms among the
natural populations of An. gambiae s.s. and An. coluzzii in two ecogeographical regions of Senegal.
The introgression of the kdr-west mutation from An. gambiae to An. coluzzii in the sympatric area was
also assessed.
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2. Materials and Methods

2.1. Study Areas

This study was conducted during the 2017 and 2018 raining seasons in three health districts
located in two different eco-geographical zones of Senegal.

The districts of Tambacounda (13◦46′14” N; 13◦40′02” W) and Kedougou (12◦33′28” N; 12◦10′27” W)
are both located in the southern region of the country and belong to the Sudanese eco-geographical zone.
The health district of Fatick (14◦21′29” N; 16◦35′08” W is in the Sudan-Sahelian ecozone in the centre of
Senegal. Tambacounda is located along the Gouloumbou River and was chosen as a sympatric area of
the two incipient species. The main activity is agriculture of banana and rice involving high pesticide
use. Kedougou is characterized by an important raining season with temporary breeding sites and was
chosen as an allopatric area (or area of predominance) for An. gambiae whereas Fatick characterized by a
low and irregular rainfall with a permanent river (Nema) was retained as an allopatric area (or area of
predominance) for An. coluzzii. Subsistence crops are practiced in both areas with insecticide used.

2.2. Samples Collection

Larvae and pupae of An. gambiae s.l. were collected from breeding sites, during the two successive
rainy seasons (August–October) in 2017 and (October–November) in 2018 and reared until emergence
then exposed to insecticides. In addition, resting adult mosquitoes were collected indoor using the
pyrethrum spray collection method, early on the morning (6:00 to 8:00 am), once every surveyed month
during the all the study period (August–November).

2.3. Plasmodium spp. Infection Rate

Taqman method described by Bass [21] was used to screen samples for the presence of the
Plasmodium spp. on the real-time PCR MX 3005 machine (Agilant, Santa Clara, CA, USA). The PlasF
(5′-GCT TAG TTA CGA TTA ATA GGA GTA GCT TG-3′) and PlasR (5′-GAA AAT CTA AGA ATT TCA
CCT CTG ACA-3′) primers set were used together with two probes labeled with the FAM fluorophore
(Falcip+ 5′-TCT GAA TAC GAA TGT C-3′) to detect Plasmodium falciparum, and the HEX fluorophore
(OVM+ 5′-CTG AAT ACA AAT GCC-3′) to detect Plasmodium ovale, Plasmodium vivax and Pplasmodium
malariae. All positives samples were confirmed by nested PCR [22].

2.4. WHO Insecticide Susceptibility and Synergist Tests

Non-blood-fed females of An. gambiae s.l. aged of 3–5 days were exposed to DDT (4%),
deltamethrin (0.05%), permethrin (0.75%), alphacypermethrin (0.1%), lambda-cyhalothrin (0.05%),
bendiocarb (0.1%) and pirimiphos methyl (1%) using the standard WHO-susceptibility test procedures
for adult mosquitoes at a temperature of 25 ± 2 ◦C and at 80 ± 10% relative humidity [23].

To investigate the putative role of detoxification enzyme in the pyrethroid resistance among
highly resistant populations of An. gambiae s.l. from Kedougou, 3–5 days non-blood-fed females
were tested against permethrin and deltamethrin as described above, after 1-h pre-exposure to 4% of
Piperonal butoxide (PBO). For each insecticide molecules a batch of at least 50 specimens of 3–5 days
non-blood-fed females were exposed to untreated papers as control.

Knock-downed specimens were recorded at 10, 15, 20, 30, 40, 50- and 60-min post exposure,
and mortality was measured after a period of observation 24 h post-exposure.

2.5. Estimation of Resistance Intensity

To establish the intensity of pyrethroid resistance in Kedougou and Tambacounda, additional
bioassays were conducted with 1×, 5× and 10× of the discriminating concentration of deltamethrin
(0.05, 0.25, and 0.5%) and permethrin (0.75, 3.75, and 7.5%) as described by the standard protocol of
WHO-susceptibility test procedures for adult mosquitoes [19].
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2.6. Morphological and Molecular Identification of An. gambiae s.l. Species

All specimens collected indoor and those exposed to insecticides were identified using the
Afrotropical Anopheline morphological keys of Gillies & de Meillon [24]. A sub-sample of indoors
resting adult females, with together dead and alive specimens from insecticide susceptibility tests were
randomly selected by area for subsequent analyses.

The genomic DNA was extracted from single mosquito’s wings and legs using the Livak
method [25], then the members of the An. gambiae complex were identified by the PCR [26,27]

2.7. Molecular Genotyping of the Vgsc-1014F, Vgsc-1014S, N1575Y and G119S Mutations

TaqMan assays were performed on the Agilent MX3005P qPCR (quantitative Polymerase Chain
Reaction) system (Agilent, Santa Clara, CA, USA) to characterize the putative target site insecticide
resistance mechanisms, including the Vgsc-1014F (West) and Vgsc-1014S (East) Kdr mutations [28],
the N1575Y mutation [18] and the G119S Ace-1 mutation [29].

2.8. Analysis of the Polymorphism of the Voltage-Gated Sodium Channel

To assess the genetic diversity and detect putative mutations associated with the knockdown
resistance (kdr), a fragment of 1014 of the voltage-gated sodium channel gene spanning the 1014 coding
was analysed. This fragment which includes a portion of intron 19 and the entire exon 20 in the
domain II of the segment 6 was amplified, purified, and sequenced in wild An. gambiae s.l. populations
sampled in 2017 in Kedougou (12 An. gambiae, 6 An. coluzzii, and 4 hybrids), and Tambacounda
(12 An. gambiae, 11 An. coluzzii and 4 hybrids).

The genomic DNA was extracted from legs and wings as described by Livak [25] then amplified
using the kdr-CL primers set (kdr-CL-F: 5′-AAATGTCTCGCCCAAATCAG-3′ and kdr-CL-R: 5′-GCA
CCTGCAAAACAATGTCA-3′) as described by Pinto [30]. PCR products were purified using the
exonuclease I (Exo I)/Shrimp Alkaline Phosphate (Exo-SAP) purification Kit (New England Biolabs,
MA, USA) according to the manufacturer’s instructions, and sequenced using the ABI automated
sequencer (Applied Biosystems, Foster City, CA, USA).

The amplified sequences were corrected using BioEdit v.7.2.1 [31] then aligned using ClustalW [32].
Phylogenetic analysis and haplotype reconstruction were done using the DnaSP v.5.10 [33]. Sequences
were compared with reference sequences retrieved from Genbank (http://blast.ncbi.nlm.nih.gov/Blast.
cgi) and the maximum likelihood phylogenetic tree was constructed using MEGA v.7.0 [34].

2.9. Metabolic Resistance Genes Expression

The expression level of the CYP450 genes family (CYP6M2, CYP6P3, CYP4G16, CYP4G16,
CYP9K1, CYP6Z1, and CYP6Z2), and GSTe2 was assessed from three biological replicates of
surviving An. gambiae after exposure to Permethrin (Kedougou and Tambacounda) and Deltamethrin
(Kedougou). RNA (Rubonucleic acid) was extracted and purified using the picopure RNA
isolation Kit (Life Technologies, Camarillo, CA, USA) according to the manufacturer’s instructions.
cDNA (complementary Deoxyribonucleic acid) was synthesized from the purified RNA by quantitative
RT-PCR using the SuperScript III (Invitrogen, Waltham, MA, USA) and the oligo-dT20 and RNAse
H (New England Biolabs, Ipswich, MA, USA) kit in a total reactional volume of 20 µL including of
19 µL PCR mix (10 µL of SyBr Green, 7.8 µL of dH2O, 0.6 µL of forward and reverse primers at the
concentration of 10 mM for each gene of interest), and 1 µL of cDNA (or dH2O water for controls).
Amplification was performed with an initial step of denaturation at 95 ◦C for 3 min followed by
40 cycles of 10 s at 95 ◦C, 10 s at 60 ◦C, then one cycle of 1 min at 95 ◦C, 30 s at 55 ◦C and 30 s at
95 ◦C. The cDNA extract from the An. gambiae Kisumu susceptible strain was used as a susceptible
biological control.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.10. Data Analysis

The 24 h post-exposure mortality for bioassay was estimated for each insecticide tested by dividing
the number of dead mosquitoes per replicate by the total number of mosquitoes exposed. Odds ratios,
Chi-square and Fisher’s exact tests were used for statistical comparisons. The relative expression for
each metabolic gene was calculated according to the 2−∆∆CT method [35] and the statistical significance
between gene expression estimates was performed using unpaired Student t test. The 5% significance
level was considered for all the statistical tests. All analyses were conducted using GraphPad Prism
version 7.00 and R version 3.5.2 software version.

3. Results

3.1. Species Composition

3.1.1. Indoor Collection

A total of 1474 specimens were collected, 657 and 817 in 2017 and 2018, respectively. In the
An. gambiae complex, An. arabiensis was predominant in Fatick (81.68 vs. 65.17%) and was present
in Kedougou (16.36 vs. 7.46%) and Tambacounda (28.94 vs. 15.64%). An. melas was found only in
Fatick (Table S1). Compared to An. gambiae, An. coluzzii was most abundant in Fatick (67.85% vs.
88.52%) but less abundant in Kedougou (93.99% vs. 90.32%) in 2017 and 2018 respectively (Table S1).
In Tambacounda, considered as the sympatric area of An. coluzzii and An. gambiae, the latter was
found predominant. Hybrids An. coluzzii/An. gambiae were found in all areas in 2018 with frequencies
ranging from 1.64 to 3.57% except in Kedougou (Table S1).

3.1.2. Larval Collection

A total of 1091 specimens were identified, An. arabiensis was the predominant species in Fatick
and Tambacounda (Table S2). When considering the two incipient species An. coluzzii and An. gambiae,
the latter was predominant in Kedougou (86.64%). In Tambacounda An. coluzzii and An. gambiae were
found almost at the same proportion (50% and 47.03% respectively). In Fatick, An. gambiae was found
predominant (84.85%) (Table S2).

3.2. Plasmodium spp. Infection Rate

DNA was extracted from 314 mosquitoes (head-thorax) collected in 2017 and 2018 and analyzed
using TaqMan assay for Plasmodium infection. In Kedougou, 3.16% (3/95) mosquitoes were found
infected with Plasmodium ovale, vivax or malariae and 1.05% (1/95) infected with Plasmodium falciparum.
All the mosquitoes infected were An. gambiae. In Tambacounda, 2.53% (4/158) of mosquitoes were
found infected with P. falciparum and 0.63% (1/158) were co-infected with P. falciparum and P. ovale
or vivax or malariae (OVM+). Among these infected mosquitoes, 1.27% (2/158) were An. gambiae,
0.63% (1/158) were An. coluzzii and 0.63% (1/158) was hybrid An. coluzzii/An. gambiae. The co-infected
mosquitoes were identified as An. coluzzii. In Fatick, no mosquito was found infected. The nested
PCR confirmed all Plasmodium falciparum positive mosquitoes, but failed to confirm the OVM+ from
TaqMan probably because of the low sensitivity of this method [21].

3.3. Insecticide Resistance Profile

A total of 2141 mosquitoes from the 2017 collection were tested for the conventional WHO bioassay
including 655 from Fatick, 262 from Kedougou, and 724 from Tambacounda. Mosquitoes tested were
fully susceptible to bendiocarb and pirimiphos methyl. However, in all Kedougou probable resistance
to bendiocarb was noted with 93.3 ± 3% (SEM) mortality (Figure 1). High level of resistance to DDT
(5.8 ± 2%; 52.9 ± 8%), permethrin (19.1 ± 7.4%; 43.3 ± 5.6%), deltamethrin (37.7 ± 4.8%; 60 ± 2.8%),
lambda-cyhalothrin (18.9 ± 3.6%; 52.9 ± 7.5%) and alphacypermethrin (84.3 ± 3.2%; 85.1 ± 6.2%) was
recorded in Kedougou and Tambacounda respectively (Figure 1). However, in Fatick, full susceptibility
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to alphacypermethrin and probable resistance to deltamethrin (90.2 ± 1.2%) were observed whereas
moderate resistance was noted for DDT (74.8 ± 5%) and permethrin (71.8 ± 2%) (Figure 1).

Figure 1. Susceptibility profile of Anopheles gambiae s.l. to insecticides. Recorded mortalities following
60-min exposure of Anopheles gambiae s.l. from Fatick, Tambacounda and Kedougou to different
insecticides. Data are shown as mean ± standard error of the mean (SEM).

3.4. Estimation of Resistance Intensity

To assess the strength of the phenotype resistance to permethrin and deltamethrin, the resistant
population collected in 2018 from Kedougou and Tambacounda were exposed to 5× and 10× of
discriminating concentration of permethrin and deltamethrin. Results showed a low intensity of
resistance to permethrin (5×: 100%) and deltamethrin (5×: 98± 1.1%) in Kedougou (Figure 2A) whereas
in Tambacounda a higher intensity of resistance to permethrin (5×: 94.3 ± 0.9%; 10×: 95.3 ± 0.9%) and
deltamethrin (5×: 91.2 ± 2%; 10×: 95.3 ± 0.9%) were found (Figure 2B).

Figure 2. Results of resistance intensity and synergist tests. Resistance intensity in Tambacounda (A)
and Kedougou (B); activities of PBO combined to permethrin, and deltamethrin on An. gambiae s.l.
from Kedougou (C). Data are shown as mean± standard error of the mean.
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3.5. Synergist Bioassay with PBO

To assess the implication of the cytochrome P450s in the resistance observed to permethrin
and deltamethrin, mosquitoes collected in 2018 from Kedougou were pre-exposed to PBO then to
permethrin or deltamethrin. Compared to the result of the permethrin alone (mortality: 55.42 ± 9.19%)
a nearly full recovery of the susceptibility was observed after exposure to permethrin + PBO (mortality:
96.47 ± 9.19%). For deltamethrin, a total recovery of the susceptibility was observed after pre-exposure
to the PBO (mortality: 100%) compared to the result of deltamethrin alone (mortality: 79.74 ± 7.16%)
(Figure 2C).

3.6. Distribution of Resistance Markers in the Adult Mosquitoes Collected

In all the three sites, the L1014F mutation was found in both species. In Kedougou,
the predominance area of An. gambiae, all An. gambiae mosquitoes (64/64) harboured the mutation
whereas only 70% (7/10) of the An. coluzzii harboured it (Figure 3A). The frequency of the L1014F
resistant allele was higher in An. gambiae (96.88%) compared to An. coluzzii (55%) (χ2 = 18.9; p < 0.0001)
(Figure 3B). No difference was found between the frequency of the L1014F resistant allele in An. gambiae
from this site compared to Tambacounda (χ2 = 0.79, df = 1, p = 0.37).

Figure 3. Genotyping of resistance markers in An. coluzzii, An. gambiae s.s. and their
hybrids. Distribution of Kdr(s) genotypes (A) and alleles (B) and N1575Y genotypes (C) in the
different species. Kdr − LL = Kdrw susceptible homozygous; Kdr − LF = Kdrw heterozygous;
Kdr − FF = Kdrw resistant homozygous; Kdr − LS = Kdre resistant heterozygous; Kdr − SS = Kdre
resistant heterozygous; Kdr − FS = Kdrw and Kdre resistant; 1575 − YY = Resistant homozygous;
1575−NY = Resistant heterozygous; 1575 −NN = Susceptible homozygous.

The N1575Y mutation was also found in both species with a frequency of 29.69% (19/64) in
An. gambiae and 20% (2/10) in An. coluzzii (Figure 3C), The L1014S mutation was absent in this area
(Figure 3A).

As observed in Kedougou, the frequency L1014F mutation was higher in An. gambiae 96.63%
(86/89) from Tambacounda compared to An. coluzzii 62.5% (30/48) (χ2 = 28.7; p < 0.0001) (Figure 3A,B).
Moreover, a significant difference was found also when comparing the distribution of this mutation in
An. coluzzii from Fatick compared to Tambacounda (χ2 = 28.57, df = 1, p < 0.001).

The N1575Y mutation was found at 29.21% (26/89) in An. gambiae and at 6.25% (3/48) in An. coluzzii.
Only the heterozygote (N1575Y) was detected in An. coluzzii (Figure 3C). The L1014S mutation was
found in only An. gambiae at the heterozygote form as well (Figure 3A).
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In Fatick, the predominance area of An. coluzzii, the L1014F mutation was at 6.82% (3/44) in this
species and at 16.67% (1/6) in An. gambiae (Figure 3A). The N1575Y mutation was not found in this
area (Figure 3C) and only two An. coluzzii were found carrying the L1014S mutation (Figure 3A).

All the hybrids genotyped in Kedougou (n = 2) and Tambacounda (n = 6) harboured the L1014F
mutation (Figure 3A). In Kedougou, 50% of them carried the N1575Y mutation whereas only 33.33% in
Tambacounda carried this mutation (Figure 3C).

3.7. Correlation between the 1014F Mutation and Resistance to Pyrethroid

To assess the implication of kdr-w mutation in the pyrethroid resistance observed in An. gambiae,
an allelic and genotypic association analysis was performed on 110 individuals, including 71 alive and
39 dead after exposition to pyrethroids in Kedougou. Pearson correlation test showed no significant
association between pyrethroid resistance and the presence of L1014F resistant allele (Odds Ratio = 3.7
(95% CI: 0.7–18.2, p = 0.08)). This was confirmed when comparing the likelihood of surviving of
females with RR genotypes to survive compared to RS (Odds Ratio 1.3 (95% CI: 0.3–5.1, p = 0.2)),
and SS (Odds Ratio 5.3 (95% CI: 0.6–46.5, p = 0.1)). The same pattern was observed between RS and SS
(Odds Ratio 4.0 (95% CI: 0.3–49.6, p = 0.3)) (Table 1). The association between pyrethroid resistance and
L1014F mutation was not assessed in the other locality due to the low number of dead An. coluzzii and
An. gambiae.

Table 1. Association between L1014F-kdrw mutation and resistance to pyrethroids in Anopheles gambiae
from Kedougou.

Combination of Genotypes
at the L1014F-kdr Locus

An. gambiae

Odds Ratio p-Value

RR vs. RS
1.3

0.2(0.3–5.1)

RR vs. SS
5.3

0.1(0.6–46.5)

RS vs. SS
4.0

0.3(0.3–49.6)

R vs. S
3.7

0.08(0.7–18.2)

3.8. Genetic Diversity in the kdr Locus of the Voltage-Gated Sodium Channel

A total of 484-bp fragments of the VGSC spanning the 1014 codon were successfully sequenced
in 24 An. gambiae, 17 An. coluzzii and 8 An. coluzzii/An. gambiae from Kedougou and Tambacounda.
The genetic diversity parameters of this fragment is provided in the Table S3. Overall, five polymorphic
sites defining 4 haplotypes were detected with a haplotypic diversity of 0.219. The overall nucleotide
diversity was 0.001. At the species level, low haplotypic and genetic diversity were found in An. coluzzii
and the hybrids. Analysis of the haplotype Network showed that the major and ancestral haplotype
H1 (87/99) was shared between An. coluzzii, An. gambiae and their hybrids and was specific to the
L1014F resistant allele. The two following haplotypes H3 (9/99) and H2 (2/99) were specific to L1014F
susceptible allele and carried by An. coluzzii only. The lowest H4 (1/99) belonged to the L1014F resistant
allele and was specific to the hybrid (Figure 4A,C).

The analysis of the maximum likelihood phylogenetic tree between mosquitoes from different
localities showed two main clades: the major with the two species and their hybrids and the second
made up only by An. coluzzii (Figure 4B).
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Figure 4. Genetic diversity parameters of Vgsc in An. coluzzii, An. gambiae and their hybrids from
Senegal in relation to the species. (A) Haplotype network in relation to the species composition;
(B) phylogenetic trees (using a maximum likelihood method) and the nucleotide diversity of the L1014F
mutation in Senegal (C).

3.9. Implication of the G119S Mutation in the Observed Bendiocarb Resistance

To assess the implication of the G119S mutation in the moderate resistance to bendiocarb observed
in Kedougou, 7 mosquitoes alive to bendiocarb and 16 dead after exposition were genotyped. All dead
samples were homozygous susceptible (G/G119) and among the 7 alive the only one which was
amplified was homozygous resistant (119S/S). This low sample size did not allow to draw a conclusion
on the role of this mutation in the resistance to bendiocarb in this area. However, genotyping of the
G119S-Ace1 marker in 62 field-collected mosquitoes revealed the presence of resistant allele with the
frequency of 22.58%. This frequency of the resistant allele suggest that this mutation could be involved
in this resistance to carbamates.

3.10. Expression Profiling of Metabolic Genes

The expression level of CYP6M2, CYP6P3, CYP4G16, CYP4G17, CYP9K1, CYP6Z1, CYP6Z2 and
GSTe2 was evaluated in An. gambiae from Kedougou and Tambacounda using the susceptible
An. gambiae laboratory strain (Kisumu) as a control. The results showed no difference in the
expression level of CYP6M2, CYP6P3, CYP4G16, CYP4G17, and GSTe2 between Kisumu and the
field-collected An. gambiae. Only CYP6Z2 was found highly overexpressed, in Deltamethrin
(Fold-change (FC) = 9.26 ± 4.99) (t = 2.4; df = 4; p = 0.03) and Permethrin (FC = 7.62 ± 5.26) (t = 3.2;
df = 4; p = 0.01) resistant mosquitoes from Kedougou compared to Kisumu. This gene tended also to
be overexpressed (FC = 5.66 ± 0.14) in Permethrin resistant mosquitoes from Tambacounda compared
to Kisumu (t = 1.9; df = 4; p = 0.05) like the CYP9K1 gene in Permethrin resistant mosquitoes from
Kedougou (t = 2.09; df = 4; p = 0.05). Furthermore, CYP6Z1 was significantly overexpressed in
Deltamethrin resistant mosquitoes from Kedougou (FC: 2.64 ± 0.29) (t = 2.7; df = 4; p = 0.02) (Figure 5).
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Figure 5. Differential expression by quantitative reverse-transcription polymerase chain reaction of the
major insecticide resistance genes in An. gambiae in Senegal compared with the susceptible Kisumu.
Error bars represent standard error of the mean. *—statistically significant p ≤ 0.05.

4. Discussion

In this study the main aim was to determine the insecticide resistance profile and the distribution
of kdr mutation in An. coluzzii and An. gambiae population from their sympatric and allopatric or
predominance area in Senegal in the 2017 and 2018 raining season.

An. gambiae was predominant in rural and most humid areas (Kedougou and Tambacounda),
while An. coluzzii was the most abundant in the arid area (Fatick). An. coluzzii and An. gambiae
differ in their ecological preference both at the larval or adult stages [36] thus explaining their spatial
and temporal distribution [37,38]. An. gambiae larvae are found in rain-dependent surface water
bodies/puddles while those of An. coluzzii are more adapted to more permanent anthropogenic
breeding sites such as irrigated rice fields [6,11,39–41]. Furthermore, An. coluzzii larvae displayed a
greater tolerance to aridity and even organic pollution [42].

The low Plasmodium infection rate found in An. coluzzii and An. gambiae from Fatick and
Tambacounda and Kedougou corroborate with other findings [43,44]. It could be due by the use of
LLINs which reduce the human vector contact or cause a behavioural change of the vector. This was
demonstrated in An. gambiae which was highly anthropophilic before the widespread use of nets
showed a trophic deviation towards cattle [45].

Globally, the results of bioassays showed that the populations tested were resistant to DDT
and Pyrethroids and susceptible to organophosphate and carbamate except in Kedougou where
bendiocarb resistance was suspected. Previous studies in Senegal showed the same status of resistance
in Tambacounda, Kedougou and other location [20,46,47]. However, in Fatick, as our findings, it was
reported a susceptibility to bendiocarb and suspected resistance to deltamethrin but, they found a
suspected resistance to pirimiphos methyl with what we have found a susceptibility [48]. In contrast
to our findings, recently it was found a high resistance to bendiocarb and Pirimiphos methyl in an
urban area in Senegal due to the large use of this molecule in the crops protection [9].

The resistance to DDT and pyrethroids is common in most African countries [6,40,47,49].
DDT resistance has often been linked to its historical use for vector-borne diseases and crop pest
control. Despite the fact that this insecticide have been abandoned, DDT could persist in the
environment due to its widespread use in public health and agriculture in the past decades [40,50].
Furthermore, the cross-resistance between pyrethroids and DDT through kdr could further explain
the high DDT resistance. Resistance to pyrethroids could be due to the fact that they are the main
molecules recommended for bed nets impregnation which is largely distributed across several African
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countries [2] as noted in Senegal [51–54]. In Kedougou food crops were practiced during the raining
season which could involve the use of commercial pesticides comprising carbamate and pyrethroids.
This could explain the suspected resistance to bendiocarb in this area.

The resistance level varied between the three sites. It was low in Fatick compared to Tambacounda
and Kedougou. The resistance assay showed a high intensity of resistance in Tambacounda and
moderate intensity in Kedougou. This could be explained by the fact that in addition to the LLNs use
in Tambacounda, this site is an area with intense agriculture activity (banana, rice) with recurrent use of
pesticides on crops throughout the year compared to Kedougou where subsistence crops are practicing
only during the raining season. This finding corroborates with previous studies showing a significant
correlation between agriculture intensity and phenotypic resistance in Tanzania [55]. Previous studies
showed that in west Africa, pyrethroid resistance is high and predominant in An. gambiae compared to
An. arabiensis [20,56] this could explain the decrease of pyrethroid resistance in 2018 compared to 2017.
In this latter, bioassay was conducted in September–October when An. gambiae was predominant and
in 2018 in October–November where An. arabiensis proportion became important.

The predominance of the L1014F mutation has been highlighted in An. gambiae from west
Africa [6,12,57]. Previous studies have reported the presence of this mutation in An. gambiae only
and not in An. coluzzii even in the sympatric areas [57,58]. This situation was found in 2009 in
Tambacounda (Senegal) where no An. coluzzii carried the mutation [13]. However, subsequent study
in this same area in 2016 by the same authors [20] reported the presence of the L1014F mutation in
both species. In the present study, the findings corroborate with those of Niang [20] with the presence
of the 1014F mutation in both species in the same area, but the frequency of the mutation was higher in
our study. This support the results in Benin [10] and Mali [59] with a high frequency of the mutation in
both species.

In Kedougou the An. gambiae predominant area, the L1014F mutation was higher and tended to
fixation in this population. However, in Fatick the predominance area of An. coluzzii 89% of this latter
were susceptible. A very low frequency of the mutation in a predominant area of An. coluzzii was also
found in previous studies in west Africa [6,60]. The presence of the L1014F mutation in An. coluzzii has
been attributed to introgression from An. gambiae [15,61] and the results found here in the sympatric
can support this hypothesis.

The L1014S mutation was detected only in An. arabiensis and An. coluzzii [9,48] in Senegal and
only in An. arabiensis in Benin [10]. However, in this study, in addition to An. coluzzii (two) in Fatick we
have also found one An. gambiae carrying the mutation but all at the heterozygote state. Similar result
was also found in central Africa (in Equatorial Guinea [62] and in Cameroun [63,64])

The presence of the N1575Y mutation has been reported in West Africa [18,19,65]. This study
was the first showing the presence of this mutation in Senegal It was found to be present in both
An. coluzzii and An. gambiae in Tambacounda the sympatric area and Kedougou the predominance
zone of An. gambiae where the frequency of the L1014F mutation was high. However, it was absent in
Fatick, the predominance area of An. coluzzii where the frequency of the L1014F mutation was very
low. This corroborates the results of Jones and collaborators reporting no N1575Y mutation in the
samples from areas of low frequency of the L1014F mutation. In this study, the N1575Y mutation
in both species were found exclusively in mosquitoes harbouring the L1014F mutation as found in
Burkina Faso [19]. This finding supports the hypothesis that N1575Y mutation was linked to the
L1014F mutation suggesting that the N1575Y mutation compensates for deleterious fitness effects of
L1014F and/or confers additional resistance to insecticides [18].

The G119S-Ace-1 mutation is found to be involved in bendiocarb resistance in the An. gambiae s.l.
in West Africa [16,17]. However, in this study the mutation is well present in the adult population,
but further studies are needed to confirm its implication in the bendiocarb resistance in this area.

As found in previous studies [66,67], the absence of correlation between the kdrw mutation and
resistance to pyrethroid in the An. gambiae population from Kedougou is probably due to the fact that
this resistance allele is already fixed in this location masking it’s role. Experiments performed here
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also suggest that metabolic resistance is playing an important role in this resistance. This was most
evident based on the results of synergist bioassay with PBO showing a nearly or full recovery of the
susceptibility to permethrin and deltamethrin respectively. Overexpression of P450 enzymes has been
demonstrated to play a major role in pyrethroid resistance in insects [63] including in other malaria
vectors such as An. funestus in Senegal [68]. Likewise, high GSTs activity was reported to be associated
with insect resistance to DDT and pyrethroids [59,69]. The following candidate genes used in this
study (CYP6M2, CYP6P3 [70–72], CYP6Z2 [73], CYP4G16, CYP4G17 [19,74,75] and CYP9K1) have been
reported to be involved in pyrethroid resistance in An. gambiae in Africa [76].

In this study only CYP6Z1 and CYP6Z2 have been differentially expressed between field-resistant
mosquitoes and the susceptible strain suggesting a potential implication of these two genes in the
pyrethroid resistance observed.

5. Conclusions

This findings of high pyrethroid and DDT resistance in An. gambiae and An. coluzzii from Senegal
is a major obstacle to malaria control using pyrethroid or DDT-based tools. PBO or Duo nets and
IRS with organophosphates could be used as an alternative measure to sustain malaria control in
the study area as metabolic resistance was found implicated. Full susceptibility was noticed with
organophosphate and carbamates. Our findings showed that the L1014F mutation is widespread in
the sympatric An. coluzzii population and that the L1014S is present at very low frequency in both
species. This study reveals for the first time the presence of the N1575Y mutation in An. coluzzii and
An. gambiae in Senegal. Further studies are needed to better understand the evolution of this mutation
and its implication to the resistance.
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