17 research outputs found

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases

    Genome-wide Association Study of Long COVID

    Get PDF
    SummaryInfections can lead to persistent or long-term symptoms and diseases such as shingles after varicella zoster, cancers after human papillomavirus, or rheumatic fever after streptococcal infections1, 2. Similarly, infection by SARS-CoV-2 can result in Long COVID, a condition characterized by symptoms of fatigue and pulmonary and cognitive dysfunction3–5. The biological mechanisms that contribute to the development of Long COVID remain to be clarified. We leveraged the COVID-19 Host Genetics Initiative6, 7to perform a genome-wide association study for Long COVID including up to 6,450 Long COVID cases and 1,093,995 population controls from 24 studies across 16 countries. We identified the first genome-wide significant association for Long COVID at theFOXP4locus.FOXP4has been previously associated with COVID-19 severity6, lung function8, and cancers9, suggesting a broader role for lung function in the pathophysiology of Long COVID. While we identify COVID-19 severity as a causal risk factor for Long COVID, the impact of the genetic risk factor located in theFOXP4locus could not be solely explained by its association to severe COVID-19. Our findings further support the role of pulmonary dysfunction and COVID-19 severity in the development of Long COVID.</jats:p

    Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations

    Get PDF
    Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p &lt; 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.</p

    Rare coding variants pinpoint genes that control human hematological traits.

    No full text
    The identification of rare coding or splice site variants remains the most straightforward strategy to link genes with human phenotypes. Here, we analyzed the association between 137,086 rare (minor allele frequency (MAF) <1%) coding or splice site variants and 15 hematological traits in up to 308,572 participants. We found 56 such rare coding or splice site variants at P<5x10-8, including 31 that are associated with a blood-cell phenotype for the first time. All but one of these 31 new independent variants map to loci previously implicated in hematopoiesis by genome-wide association studies (GWAS). This includes a rare splice acceptor variant (rs146597587, MAF = 0.5%) in interleukin 33 (IL33) associated with reduced eosinophil count (P = 2.4x10-23), and lower risk of asthma (P = 2.6x10-7, odds ratio [95% confidence interval] = 0.56 [0.45–0.70]) and allergic rhinitis (P = 4.2x10-4, odds ratio = 0.55 [0.39–0.76]). The single new locus identified in our study is defined by a rare p.Arg172Gly missense variant (rs145535174, MAF = 0.05%) in plasminogen (PLG) associated with increased platelet count (P = 6.8x10-9), and decreased D-dimer concentration (P = 0.018) and platelet reactivity (P<0.03). Finally, our results indicate that searching for rare coding or splice site variants in very large sample sizes can help prioritize causal genes at many GWAS loci associated with complex human diseases and traits

    Association results between <i>PLG</i>-rs145535174 and hemostatic and coagulation factors in the Framingham Heart Study.

    No full text
    <p>The direction of the effects (BETA) is given for the rare G-allele (on forward strand). SE, standard error; ADP, Adenosine diphosphate; PAI-1, plasminogen activator inhibitor type 1; tPA, tissue plasminogen activator; FVII, factor VII; vWF, von Willebrand factor. We highlight in bold nominal P-values <0.05.</p

    New rare coding or splice site variants associated with hematological traits.

    No full text
    <p>Chromosome and genomic coordinates are on build hg19 of the human genome. Allele frequencies and directions of effect are for allele A2. Effect sizes (BETA and SE) are in standard deviation units. <i>P</i><sub>het</sub> is the Cochran’s Q test heterogeneity P-value. We provide P-values in the UK Biobank (UKBB) without (non-conditional) and with (conditional) correction for the known blood-cell variants [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006925#pgen.1006925.ref001" target="_blank">1</a>]. Detailed results of the conditional analyses are in <b><a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006925#pgen.1006925.s007" target="_blank">S6 Table</a></b>. Other phenotypes are hematological traits associated at <i>P</i><5x10<sup>-8</sup> in the meta-analyses. In the Comment column, we consider SNPs previously associated with blood-cell traits that are located 500 kb on either side of the reported rare variant. <sup>a</sup>, variants that are statistically dependent of known blood-cell trait variants; <sup>b</sup>, variants that are statistically independent from known blood-cell variants, but that are located at known blood-cell trait loci; <sup>c</sup>, new blood-cell trait locus.</p

    Association between <i>IL33</i>-rs146597587 and asthma, allergic rhinitis, or endometriosis risk in the UK Biobank.

    No full text
    <p>All analyses were corrected for age, sex, and the first 10 principal components. The direction of the odds ratio is for the rare allele (rs146597587, C-allele on forward strand). The conditional <i>P</i>-values were calculated in a logistic model accounting for genotypes at common single nucleotide polymorphisms (SNPs) previously associated with asthma, allergic rhinitis, or endometriosis: rs343496, rs7032572, rs72699186, rs1342326, rs2381416, rs928413, rs10975519.</p

    Multi-ethnic genome-wide association analyses of white blood cell and platelet traits in the Population Architecture using Genomics and Epidemiology (PAGE) study

    No full text
    Abstract Background Circulating white blood cell and platelet traits are clinically linked to various disease outcomes and differ across individuals and ancestry groups. Genetic factors play an important role in determining these traits and many loci have been identified. However, most of these findings were identified in populations of European ancestry (EA), with African Americans (AA), Hispanics/Latinos (HL), and other races/ethnicities being severely underrepresented. Results We performed ancestry-combined and ancestry-specific genome-wide association studies (GWAS) for white blood cell and platelet traits in the ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) Study, including 16,201 AA, 21,347 HL, and 27,236 EA participants. We identified six novel findings at suggestive significance (P < 5E-8), which need confirmation, and independent signals at six previously established regions at genome-wide significance (P < 2E-9). We confirmed multiple previously reported genome-wide significant variants in the single variant association analysis and multiple genes using PrediXcan. Evaluation of loci reported from a Euro-centric GWAS indicated attenuation of effect estimates in AA and HL compared to EA populations. Conclusions Our results highlighted the potential to identify ancestry-specific and ancestry-agnostic variants in participants with diverse backgrounds and advocate for continued efforts in improving inclusion of racially/ethnically diverse populations in genetic association studies for complex traits
    corecore