7 research outputs found

    Spectrum of Genetic Diseases in Tunisia: Current Situation and Main Milestones Achieved

    No full text
    Genetic diseases in Tunisia are a real public health problem given their chronicity and the lack of knowledge concerning their prevalence and etiology, and the high rates of consanguinity. Hence, we performed systematic reviews of the literature in order to provide a more recent spectrum of these disorders and to expose the challenges that still exist to tackle these kinds of diseases. A manual textual data mining was conducted using MeSH and PubMed databases. Collected data were classified according to the CIM-10 classification and the transmission mode. The spectrum of these diseases is estimated to be 589 entities. This suggests remarkable progress through the development of biomedical health research activities and building capacities. Sixty percent of the reported disorders are autosomal recessive, which could be explained by the high prevalence of endogamous mating. Congenital malformations (29.54%) are the major disease group, followed by metabolic diseases (22%). Sixty percent of the genetic diseases have a known molecular etiology. We also reported additional cases of comorbidity that seem to be a common phenomenon in our population. We also noticed that epidemiological data are scarce. Newborn and carrier screening was only limited to pilot projects for a few genetic diseases. Collected data are being integrated into a database under construction that will be a valuable decision-making tool. This study provides the current situation of genetic diseases in Tunisia and highlights their particularities. Early detection of the disease is important to initiate critical intervention and to reduce morbidity and mortality

    Identification of a CDH12 potential candidate genetic variant for an autosomal dominant form of transgrediens and progrediens palmoplantar keratoderma in a Tunisian family

    No full text
    International audienceMolecular diagnosis of rare inherited palmoplantar keratoderma (PPK) is still challenging. We investigated at the clinical and genetic level a consanguineous Tunisian family presenting an autosomal dominant atypical form of transgrediens and progrediens PPK to better characterize this ultrarare disease and to identify its molecular etiology. Whole-exome sequencing (WES), filtering strategies, and bioinformatics analysis have been achieved. Clinical investigation and follow up over 13 years of this Tunisian family with three siblings formerly diagnosed as an autosomal recessive form of Mal de Melela-like conducted us to reconsider its initial phenotype. Indeed, the three patients presented clinical features that overlap both Mal de Meleda and progressive symmetric erythrokeratoderma (PSEK). The mode of inheritance was also reconsidered, since the mother, initially classified as unaffected, exhibited a similar expression of the disease. WES analysis showed the absence of potentially functional rare variants in known PPKs or PSEK-related genes. Results revealed a novel heterozygous nonsynonymous variant in cadherin-12 gene (CDH12, NM_004061, c.1655C > A, p.Thr552Asn) in all affected family members. This variant is absent in dbSNP and in 50 in-house control exomes. In addition, in silico analysis of the mutated 3D domain structure predicted that this variant would result in cadherin-12 protein destabilization and thermal instability. Functional annotation and biological network construction data provide further supporting evidence for the potential role of CDH12 in the maintenance of skin integrity. Taken together, these results suggest that CDH12 gene is a potential candidate gene for an atypical presentation of an autosomal dominant form of transgrediens and progrediens PPK

    Fgfr3 Is a Positive Regulator of Osteoblast Expansion and Differentiation During Zebrafish Skull Vault Development

    No full text
    International audienceGain or loss-of-function mutations in fibroblast growth factor receptor 3 (FGFR3) result in cranial vault defects highlighting the protein's role in membranous ossification. Zebrafish express high levels of fgfr3 during skull development; in order to study FGFR3's role in cranial vault development, we generated the first fgfr3 loss-of-function zebrafish (fgfr3( lof/lof)). The mutant fish exhibited major changes in the craniofacial skeleton, with a lack of sutures, abnormal frontal and parietal bones, and the presence of ectopic bones. Integrated analyses (in vivo imaging and single-cell RNA sequencing of the osteoblast lineage) of zebrafish fgfr3( lof/lof) revealed a delay in osteoblast expansion and differentiation, together with changes in the extracellular matrix. These findings demonstrate that fgfr3 is a positive regulator of osteogenesis. We conclude that changes in the extracellular matrix within growing bone might impair cell-cell communication, mineralization, and new osteoblast recruitment. (c) 2020 American Society for Bone and Mineral Research

    A Tunisian family with a novel mutation in the gene CYP 4F22 for lamellar ichthyosis and co‐occurrence of hearing loss in a child due to mutation in the SLC 26A4 gene

    No full text
    International audienceBackground: Co-occurrence of two genetic diseases is challenging for accurate diagnosis and genetic counseling. The recent availability of whole exome sequencing (WES) has dramatically improved the molecular diagnosis of rare genetic diseases in particular in consanguineous populations.Methods: We report here on a consanguineous family from Southern Tunisia including three members affected with congenital ichthyosis. The index case had a hearing loss (HL) and ichthyosis and was primarily suspected as suffering from keratitis-ichthyosis-deafness (KID) syndrome. WES was performed for the index case, and all members of the nuclear family were sequenced (Sanger method).Results: The WES approach allowed the identification of two strong candidate variants in two different genes; a missense mutation c.1334T>G (p.Leu445Trp) in exon 11 of SLC26A4 gene, associated with isolated HL and a novel missense mutation c.728G>T (p.Arg243Leu) in exon 8 of CYP4F22 gene likely responsible for ichthyosis. These two mutations were predicted to be pathogenic by three pathogenicity prediction softwares (Scale-Invariant Feature Transform [SIFT], Polymorphism Phenotyping [PolyPhen], Mutation Taster) to underlie the HL and ichthyosis, respectively.Conclusions: The present study raises awareness about the importance of familial history for accurate diagnosis of syndromic genetic diseases and differential diagnosis with co-occurrence of two distinct clinical entities. In addition, in countries with limited resources, WES sequencing for a single individual provides a cost effective tool for molecular diagnosis confirmation and genetic counseling

    A monocyte/dendritic cell molecular signature of SARS-CoV2-related multisystem inflammatory syndrome in children (MIS-C) with severe myocarditis

    No full text
    PostĂ© sur bioRxiv le 23/02/2021SARS-CoV-2 infection in children is generally milder than in adults, yet a proportion of cases result in hyperinflammatory conditions often including myocarditis. To better understand these cases, we applied a multi-parametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. The most severe forms of MIS-C (multisystem inflammatory syndrome in children related to SARS-CoV-2), that resulted in myocarditis, were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomic analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis, characterized by sustained NF-ÎșB activity, TNF-α signaling, associated with decreased gene expression of NF-ÎșB inhibitors. We also found a weak response to type-I and type-II interferons, hyperinflammation and response to oxidative stress related to increased HIF-1α and VEGF signaling. These results provide potential for a better understanding of disease pathophysiology

    A monocyte/dendritic cell molecular signature of SARS-CoV-2-related multisystem inflammatory syndrome in children with severe myocarditis

    No full text
    International audienceBackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis.MethodsTo better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels.FindingsThe most severe forms of multisystem inflammatory syndrome in children (MIS-C) related to SARS-CoV-2 that resulted in myocarditis were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomics analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis characterized by sustained nuclear factor ÎșB (NF-ÎșB) activity and tumor necrosis factor alpha (TNF-α) signaling and associated with decreased gene expression of NF-ÎșB inhibitors. We also found a weak response to type I and type II interferons, hyperinflammation, and response to oxidative stress related to increased HIF-1α and Vascular endothelial growth factor (VEGF) signaling.ConclusionsThese results provide potential for a better understanding of disease pathophysiology
    corecore