14 research outputs found

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic

    Get PDF
    Since December 2019, the global health population has faced the rapid spreading of coronavirus disease (COVID-19). With the incremental acceleration of the number of infected cases, the World Health Organization (WHO) has reported COVID-19 as an epidemic that puts a heavy burden on healthcare sectors in almost every country. The potential of artificial intelligence (AI) in this context is difficult to ignore. AI companies have been racing to develop innovative tools that contribute to arm the world against this pandemic and minimize the disruption that it may cause. The main objective of this study is to survey the decisive role of AI as a technology used to fight against the COVID-19 pandemic. Five significant applications of AI for COVID-19 were found, including (1) COVID-19 diagnosis using various data types (e.g., images, sound, and text); (2) estimation of the possible future spread of the disease based on the current confirmed cases; (3) association between COVID-19 infection and patient characteristics; (4) vaccine development and drug interaction; and (5) development of supporting applications. This study also introduces a comparison between current COVID-19 datasets. Based on the limitations of the current literature, this review highlights the open research challenges that could inspire the future application of AI in COVID-19This work was supported by a 2021 Incheon National University Research Grant. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A4A4079299)S

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Towards unlocking the biocontrol potential of Pichia kudriavzevii for plant fungal diseases: in vitro and in vivo assessments with candidate secreted protein prediction

    No full text
    Abstract Background Plant fungal pathogens cause substantial economic losses through crop yield reduction and post-harvest storage losses. The utilization of biocontrol agents presents a sustainable strategy to manage plant diseases, reducing the reliance on hazardous chemical. Recently, Pichia kudriavzevii has emerged as a promising biocontrol agent because of its capacity to inhibit fungal growth, offering a potential solution for plant disease management. Results Two novel Pichia kudriavzevii strains, Pk_EgyACGEB_O1 and Pk_EgyACGEB_O2, were isolated from olive brine samples. The microscopic characterization of the strains revealed similar structures. However, there were noticeable differences in their visual morphology. Based on their internal transcribed spacer (ITS) DNA sequences, Pk_EgyACGEB_O1 and Pk_EgyACGEB_O2 strains assigned by GenBank IDs MZ507552.1 and MZ507554.1 shared high sequence similarity (~ 99.8% and 99.5%) with P. kudriavzevii, respectively. Both strains were evaluated in vitro against plant pathogenic fungi. The strains revealed the ability to consistently inhibit fungal growth, with Pk_EgyACGEB_O2 showing higher effectiveness. In addition, both P. kudriavzevii strains effectively controlled grey mold disease caused by B. cinerea in golden delicious apples, suggesting their potential as sustainable and eco-friendly biocontrol agents for post-harvest diseases. Based on a comprehensive bioinformatics pipeline, candidate-secreted proteins responsible for the potent antifungal activity of P. kudriavzevii were identified. A total of 59 proteins were identified as common among the P. kudriavzevii CBS573, SD108, and SD129 strains. Approximately 23% of the secreted proteins in the P. kudriavzevii predicted secretome are hydrolases with various activities, including proteases, lipases, glycosidases, phosphatases, esterases, carboxypeptidases, or peptidases. In addition, a set of cell-wall-related proteins was identified, which might enhance the biocontrol activity of P. kudriavzevii by preserving the structure and integrity of the cell wall. A papain inhibitor was also identified and could potentially offer a supplementary defense against plant pathogens. Conclusion Our results revealed the biocontrol capabilities of P. kudriavzevii against plant pathogenic fungi. The research focused on screening novel strains for their ability to inhibit the growth of common pathogens, both in vitro and in vivo. This study shed light on how P. kudriavzevii interacts with fungal pathogens. The findings can help develop effective strategies for managing plant diseases

    Incidental extensive adenocarcinoma in lungs explanted from a transplant recipient with an idiopathic pulmonary fibrosis flare-up: A clinical dilemma

    No full text
    Patients under consideration for lung transplantation as treatment for end-stage lung diseases such as idiopathic pulmonary fibrosis (IPF) often have risk factors such as a history of smoking or concomitant emphysema, both of which can predispose the patient to lung cancer. In fact, IPF itself increases the risk of lung cancer development by 6.8% to 20%. Solid organ malignancy (non-skin) is an established contraindication for lung transplantation. We encountered a clinical dilemma in a patient who presented with an IPF flare-up and underwent urgent evaluation for lung transplantation. After transplant, the patient's explanted lungs showed extensive adenocarcinoma in situ, with the foci of invasion and metastatic adenocarcinoma in N1-level lymph nodes, as well as usual interstitial pneumonia. Retrospectively, we saw no evidence to suggest malignancy in addition to the IPF flare-up. Clinical diagnostic dilemmas such as this emphasize the need for new noninvasive testing that would facilitate malignancy diagnosis in patients too sick to undergo invasive tissue biopsy for diagnosis. Careful pathological examination of explanted lungs in patients with IPF is critical, as it can majorly influence immunosuppressive regimens, surveillance imaging, and overall prognosis after lung transplant. Keywords: Adenocarcinoma in situ, Lung transplant, Lung allocation score, Incidental tumors in lung explants, Lung explant pathology, Lung cancer in lung transplant recipient

    Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications

    No full text
    Kiwi Actinidia deliciosa pruning residues were here used for the first time as precursors for the extraction of high performing cellulose nanocrystals (CNC) by applying a bleaching treatment followed by an acidic hydrolysis. The resultant cellulosic nanostructures, obtained by an optimize extraction procedure (0.7% wt/v two times of sodium chlorite NaClO2) followed by an hydrolysis step, were then used as reinforcements phases in poly(vinyl alcohol) (PVA) blended with natural chitosan (CH) based films and also combined, for the first time, with carvacrol used here as active agent. Morphological and optical characteristics, mechanical response, thermal and migration properties, moisture content and antioxidant and antimicrobial assays were conducted. The morphological, optical and colorimetric results underlined that no particular alterations were induced on the transparency and color of PVA and PVA_CH blend by the presence of CNC and carvacrol, while they were able to modulate the mechanical responses, to induce antioxidant activities maintaining the migration levels below the permitted limits and suggesting the possible application in industrial sectors. Finally, inhibitions on bacterial development were detected for multifunctional systems, suggesting their protective function against microorganisms contamination.11n

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    Get PDF
    Background: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats

    No full text
    corecore