47 research outputs found

    Pediatric colloid cysts: a multinational, multicenter study. An IFNE-ISPN-ESPN collaboration

    Get PDF
    OBJECTIVE Colloid cysts (CCs) are rare at all ages, and particularly among children. The current literature on pediatric CC is limited, and often included in mixed adult/pediatric series. The goal of this multinational, multicenter study was to combine forces among centers and investigate the clinical course of pediatric CCs. METHODS A multinational, multicenter retrospective study was performed to attain a large sample size, focusing on CC diagnosis in patients younger than 18 years of age. Collected data included clinical presentation, radiological characteristics, treatment, and outcome. RESULTS One hundred thirty-four children with CCs were included. Patient age at diagnosis ranged from 2.4 to 18 years (mean 12.8 ± 3.4 years, median 13.2 years, interquartile range 10.3–15.4 years; 22% were \u3c 10 years of age). Twenty-two cases (16%) were diagnosed incidentally, including 48% of those younger than 10 years of age. Most of the other patients had symptoms related to increased intracranial pressure and hydrocephalus. The average follow-up duration for the entire group was 49.5 ± 45.8 months. Fifty-nine patients were initially followed, of whom 28 were eventually operated on at a mean of 19 ± 32 months later due to cyst growth, increasing hydrocephalus, and/or new symptoms. There was a clear correlation between larger cysts and symptomatology, acuteness of symptoms, hydrocephalus, and need for surgery. Older age was also associated with the need for surgery. One hundred three children (77%) underwent cyst resection, 60% using a purely endoscopic approach. There was 1 death related to acute hydrocephalus at presentation. Ten percent of operated patients had some form of complication, and 7.7% of operated cases required a shunt at some point during follow-up. Functional outcome was good; however, the need for immediate surgery was associated with educational limitations. Twenty operated cases (20%) experienced a recurrence of their CC at a mean of 38 ± 46 months after the primary surgery. The CC recurrence rate was 24% following endoscopic resection and 15% following open resections (p = 0.28). CONCLUSIONS CCs may present in all pediatric age groups, although most that are symptomatic present after the age of 10 years. Incidentally discovered cysts should be closely followed, as many may grow, leading to hydrocephalus and other new symptoms. Presentation of CC may be acute and may cause life-threatening conditions related to hydrocephalus, necessitating urgent treatment. The outcome of treated children with CCs is favorable

    Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    Get PDF
    International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system

    Lightweight Verification of Executable Models

    No full text
    International audienceExecutable models play a key role in many development methods by facilitating the immediate simulation/implementation of the software system under development. This is possible because executable models include a fine-grained specification of the system behaviour. Unfortunately, a quick and easy way to check the correctness of behavioural specifications is still missing, which compromises their quality (and in turn the quality of the system generated from them). In this paper, a lightweight verification method to assess the strong executability of fine-grained behavioural specifications (i.e. operations) at design-time is provided. This method suffices to check that the execution of the operations is consistent with the integrity constraints defined in the structural model and returns a meaningful feedback that helps correcting them otherwise
    corecore